Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1804(2): 245-62, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19914407

RESUMO

The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.


Assuntos
Superóxido Dismutase/química , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/metabolismo
2.
Nucleic Acids Res ; 37(18): 6161-73, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19671525

RESUMO

Mammalian polynucleotide kinase (mPNK) is a critical DNA repair enzyme whose 5'-kinase and 3'-phoshatase activities function with poorly understood but striking specificity to restore 5'-phosphate/3'-hydroxyl termini at sites of DNA damage. Here we integrated site-directed mutagenesis and small-angle X-ray scattering (SAXS) combined with advanced computational approaches to characterize the conformational variability and DNA-binding properties of mPNK. The flexible attachment of the FHA domain to the catalytic segment, elucidated by SAXS, enables the interactions of mPNK with diverse DNA substrates and protein partners required for effective orchestration of DNA end repair. Point mutations surrounding the kinase active site identified two substrate recognition surfaces positioned to contact distinct regions on either side of the phosphorylated 5'-hydroxyl. DNA substrates bind across the kinase active site cleft to position the double-stranded portion upstream of the 5'-hydroxyl on one side, and the 3'-overhang on the opposite side. The bipartite DNA-binding surface of the mPNK kinase domain explains its preference for recessed 5'-termini, structures that would be encountered in the course of DNA strand break repair.


Assuntos
DNA/química , Polinucleotídeo 5'-Hidroxiquinase/química , Animais , Catálise , DNA/metabolismo , Camundongos , Modelos Moleculares , Mutação , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
3.
Science ; 235(4793): 1184-90, 1987 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-3823878

RESUMO

The chemistry of antibody recognition was studied by mapping the antigenicity of the protein myohemerythrin with peptide homologs of the protein sequence. The results suggest that the entire protein surface is antigenic, but the probability of there being antibodies to a given site is influenced by local stereochemistry. Although accessible to an antibody binding domain, the least reactive positions cluster in the most tightly packed and least mobile regions and are closely associated with narrow, concave grooves in the molecular surface containing bound water molecules. The most frequently recognized sites form three-dimensional superassemblies characterized by high local mobility, convex surface shape, and often by negative electrostatic potential.


Assuntos
Anticorpos/imunologia , Hemeritrina/imunologia , Metaloproteínas/imunologia , Formação de Anticorpos , Antígenos/imunologia , Hemeritrina/análogos & derivados , Imunoquímica , Mapeamento de Peptídeos
4.
Science ; 235(4793): 1191-6, 1987 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-3823879

RESUMO

The mechanisms of antibody binding to a protein were studied by an analysis of specific amino acid residues critical to nine antigenic sites on myohemerythrin. Rabbit antisera to the whole protein were assayed for binding to more than 1500 distinct peptide analogs differing from the protein sequence by single amino acid replacements. The results, combined with information from the three-dimensional crystallographic structure, were used to evaluate probable mechanisms of antibody binding at individual sites. The data from all sites examined indicate that initial binding to solvent-exposed amino acid residues may promote local side-chain displacements and thereby allow the participation of other, previously buried, residues.


Assuntos
Anticorpos/imunologia , Hemeritrina/imunologia , Metaloproteínas/imunologia , Animais , Ligação Competitiva , Fenômenos Biomecânicos , Gráficos por Computador , Hemeritrina/análogos & derivados , Conformação Molecular , Coelhos
5.
Science ; 262(5132): 387-95, 1993 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-8211159

RESUMO

The cell cycle regulatory protein CksHs2 binds to the catalytic subunit of the cyclin-dependent kinases (Cdk's) and is essential for their biological function. The crystal structure of the protein was determined at 2.1 A resolution. The CksHs2 structure is an unexpected hexamer formed by the symmetric assembly of three interlocked dimers into an unusual 12-stranded beta barrel fold that may represent a prototype for this class of protein structures. Sequence-conserved regions form the unusual beta strand exchange between the subunits of the dimer, and the metal and anion binding sites associated with the hexamer assembly. The two other sequence-conserved regions line a 12 A diameter tunnel through the beta barrel and form the six exposed, charged helix pairs. Six kinase subunits can be modeled to bind the assembled hexamer without collision, and therefore this CksHs2 hexamer may participate in cell cycle control by acting as the hub for Cdk multimerization in vivo.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular , Ciclo Celular , Sequência de Aminoácidos , Sítios de Ligação , Quinases relacionadas a CDC2 e CDC28 , Proteínas de Transporte/fisiologia , Gráficos por Computador , Sequência Conservada , Cristalografia por Raios X , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência
6.
Science ; 258(5081): 434-40, 1992 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-1411536

RESUMO

The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X6-Cys-X2-Cys-X5-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue beta-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu112 in the N-glycosylase mechanism and Lys120 in the beta-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/ultraestrutura , Endodesoxirribonucleases/ultraestrutura , Proteínas Ferro-Enxofre/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Cristalografia , Cisteína/química , Desoxirribonuclease (Dímero de Pirimidina) , Modelos Moleculares , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Difração de Raios X
7.
Science ; 279(5359): 2121-6, 1998 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-9516116

RESUMO

Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and L-Arg suggest that pterin has electronic influences on heme-bound oxygen. L-Arginine binds to glutamic acid-371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.


Assuntos
Arginina/metabolismo , Biopterinas/análogos & derivados , Óxido Nítrico Sintase/química , Conformação Proteica , Animais , Arginina/química , Sítios de Ligação , Biopterinas/química , Biopterinas/metabolismo , Citrulina/análogos & derivados , Citrulina/química , Citrulina/metabolismo , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Isoenzimas/química , Isoenzimas/metabolismo , Ligantes , Macrófagos/enzimologia , Camundongos , Modelos Moleculares , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Dobramento de Proteína , Estrutura Secundária de Proteína , Tioureia/análogos & derivados , Tioureia/química , Tioureia/metabolismo
8.
Science ; 249(4969): 659-62, 1990 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-2116666

RESUMO

A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.


Assuntos
Sítios de Ligação de Anticorpos , Anidrases Carbônicas/imunologia , Metais , Sequência de Aminoácidos , Cádmio , Cobre , Fluoresceínas , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Espectrometria de Fluorescência , Zinco
9.
Science ; 261(5124): 1047-51, 1993 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-8351519

RESUMO

Single-site mutants in the Cu,Zn superoxide dismutase (SOD) gene (SOD1) occur in patients with the fatal neurodegenerative disorder familial amyotrophic lateral sclerosis (FALS). Complete screening of the SOD1 coding region revealed that the mutation Ala4 to Val in exon 1 was the most frequent one; mutations were identified in exons 2, 4, and 5 but not in the active site region formed by exon 3. The 2.4 A crystal structure of human SOD, along with two other SOD structures, established that all 12 observed FALS mutant sites alter conserved interactions critical to the beta-barrel fold and dimer contact, rather than catalysis. Red cells from heterozygotes had less than 50 percent normal SOD activity, consistent with a structurally defective SOD dimer. Thus, defective SOD is linked to motor neuron death and carries implications for understanding and possible treatment of FALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase/genética , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/enzimologia , Sequência de Bases , Sítios de Ligação , Eritrócitos/enzimologia , Éxons , Radicais Livres/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Dobramento de Proteína , Estrutura Terciária de Proteína , Superóxido Dismutase/sangue , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Difração de Raios X
10.
Science ; 278(5337): 425-31, 1997 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-9334294

RESUMO

The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Homeodomínio/genética , Isoenzimas/química , Óxido Nítrico Sintase/química , Conformação Proteica , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Catálise , Cristalografia por Raios X , Dimerização , Indução Enzimática , Inibidores Enzimáticos/metabolismo , Guanidinas/metabolismo , Heme/química , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/fisiologia , Ligação de Hidrogênio , Imidazóis/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Oxirredução , Oxigênio/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
11.
Neuroscience ; 145(4): 1280-99, 2007 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-17174478

RESUMO

This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to various extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression.


Assuntos
Encefalopatias/enzimologia , Dano ao DNA/genética , Reparo do DNA/genética , Enzimas/química , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Sítios de Ligação/genética , Encefalopatias/genética , Encefalopatias/fisiopatologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Enzimas/genética , Enzimas/metabolismo , Humanos , Estrutura Molecular
12.
Curr Opin Struct Biol ; 5(1): 20-6, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7773744

RESUMO

DNA repair proteins act to correct mutagenic and toxic DNA damage, which can lead to cancer, aging and death. These proteins and their mechanisms of action have been found to be widely conserved between species, often from bacteria to man. Structural and biochemical studies on several bacterial enzymes involved in direct reversal and base excision repair have provided insights into the molecular basis of the recognition of damaged DNA and have also highlighted the novel roles that transition metals play in DNA repair.


Assuntos
Reparo do DNA , Proteínas , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Endodesoxirribonucleases/química , Humanos , Dados de Sequência Molecular , Proteínas/química
13.
Curr Opin Struct Biol ; 9(1): 37-47, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10047578

RESUMO

Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.


Assuntos
DNA Glicosilases , DNA Ligases/química , DNA Ligases/metabolismo , Reparo do DNA/fisiologia , Timina DNA Glicosilase , Pareamento Incorreto de Bases , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Uracila-DNA Glicosidase
14.
Structure ; 8(12): R237-41, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11188699

RESUMO

DNA mismatch repair (MMR) is initiated when the MutS protein recognizes damaged DNA. Crystal structures of MutS bound to mispaired and unpaired DNA show how MutS distinguishes damaged from undamaged DNA and explain how a broad variety of DNA mismatch lesions can be detected. The structures suggest mechanisms for the ATP-induced structural regulation of multistep DNA repair processes.


Assuntos
Pareamento Incorreto de Bases/genética , Reparo do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Genoma Bacteriano , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação por Computador , DNA Bacteriano/metabolismo , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento
15.
Structure ; 5(12): 1543-50, 1997 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9438868

RESUMO

DNA base excision repair (BER) is essential to preserving the integrity of the genome. Recent crystallographic studies of representatives from each enzyme class required for BER reveal clues to the structural basis of an entire DNA repair pathway.


Assuntos
Reparo do DNA , Enzimas/química , Enzimas/genética , Animais , Composição de Bases , Cristalografia por Raios X , Enzimas/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Relação Estrutura-Atividade
16.
Structure ; 4(9): 1077-92, 1996 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-8805593

RESUMO

BACKGROUND: The essential enzyme dUTP pyrophosphatase (dUTPase) is exquisitely specific for dUTP and is critical for the fidelity of DNA replication and repair. dUTPase hydrolyzes dUTP to dUMP and pyrophosphate, simultaneously reducing dUTP levels and providing the dUMP for dTTP biosynthesis. A high cellular dTTP: dUTP ratio is essential to avoid uracil incorporation into DNA, which would lead to strand breaks and cell death. We report the first detailed atomic-resolution structure of a eukaryotic dUTPase, human dUTPase, and complexes with the uracil-containing deoxyribonucleotides, dUMP, dUDP and dUTP. RESULTS: The crystal structure reveals that each subunit of the dUTPase trimer folds into an eight-stranded jelly-roll beta barrel, with the C-terminal beta strands interchanged among the subunits. The structure is similar to that of the E. coli enzyme, despite low sequence homology between the two enzymes. The nucleotide complexes reveal a simple and elegant way for a beta hairpin to recognize specific nucleic acids: uracil is inserted into a distorted antiparallel beta hairpin and hydrogen bonds entirely to main-chain atoms. This interaction mimics DNA base pairing, selecting uracil over cytosine and sterically precluding thymine and ribose binding. Residues from the second subunit interact with the phosphate groups and a glycine-rich C-terminal tail of the third subunit caps the substrate-bound active site, causing total complementary enclosure of substrate. To our knowledge, this is the first documented instance of all three subunits of a trimeric enzyme supplying residues that are critical to enzyme function and catalysis. CONCLUSIONS: The dUTPase nucleotide-binding sites incorporate some features of other nucleotide-binding proteins and protein kinases, but seem distinct in sequence and architecture. The novel nucleic acid base recognition motif appears ancient; higher order structures, such as the ribosome, may have evolved from a motif of this kind. These uracil-beta-hairpin interactions are an obvious way for peptides to become early coenzymes in an RNA world, providing a plausible link to the protein-DNA world. Within the beta hairpin, there is a tyrosine corner motif that normally specifies beta-arch connections; this tyrosine motif was apparently recruited to discriminate against ribonucleotides, more recently than the evolution of the beta hairpin itself.


Assuntos
Pirofosfatases/metabolismo , Uracila/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli/genética , Humanos , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética
17.
Structure ; 8(8): 841-50, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10997903

RESUMO

BACKGROUND: The Saccharomyces cerevisiae protein Cks1 (cyclin-dependent kinase subunit 1) is essential for cell-cycle progression. The biological function of Cks1 can be modulated by a switch between two distinct molecular assemblies: the single domain fold, which results from the closing of a beta-hinge motif, and the intersubunit beta-strand interchanged dimer, which arises from the opening of the beta-hinge motif. The crystal structure of a cyclin-dependent kinase (Cdk) in complex with the human Cks homolog CksHs1 single-domain fold revealed the importance of conserved hydrophobic residues and charged residues within the beta-hinge motif. RESULTS: The 3.0 A resolution Cks1 structure reveals the strict structural conservation of the Cks alpha/beta-core fold and the beta-hinge motif. The beta hinge identified in the Cks1 structure includes a novel pivot and exposes a cluster of conserved tyrosine residues that are involved in Cdk binding but are sequestered in the beta-interchanged Cks homolog suc1 dimer structure. This Cks1 structure confirms the conservation of the Cks anion-binding site, which interacts with sidechain residues from the C-terminal alpha helix of another subunit in the crystal. CONCLUSIONS: The Cks1 structure exemplifies the conservation of the beta-interchanged dimer and the anion-binding site in evolutionarily distant yeast and human Cks homologs. Mutational analyses including in vivo rescue of CKS1 disruption support the dual functional roles of the beta-hinge residue Glu94, which participates in Cdk binding, and of the anion-binding pocket that is located 22 A away and on an opposite face to Glu94. The Cks1 structure suggests a biological role for the beta-interchanged dimer and the anion-binding site in targeting Cdks to specific phosphoproteins during cell-cycle progression.


Assuntos
Proteínas de Ciclo Celular , Proteínas Fúngicas/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Ânions/metabolismo , Ciclo Celular , Análise Mutacional de DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Saccharomyces cerevisiae
18.
Artigo em Inglês | MEDLINE | ID: mdl-11554309

RESUMO

Cells have evolved distinct mechanisms for both preventing and removing mutagenic and lethal DNA damage. Structural and biochemical characterization of key enzymes that function in DNA repair pathways are illuminating the biological and chemical mechanisms that govern initial lesion detection, recognition, and excision repair of damaged DNA. These results are beginning to reveal a higher level of DNA repair coordination that ensures the faithful repair of damaged DNA. Enzyme-induced DNA distortions allow for the specific recognition of distinct extrahelical lesions, as well as tight binding to cleaved products, which has implications for the ordered transfer of unstable DNA repair intermediates between enzymes during base excision repair.


Assuntos
Dano ao DNA , DNA Glicosilases , DNA Ligases/fisiologia , Reparo do DNA , Guanina/análogos & derivados , Alquilação , Animais , Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/fisiologia , DNA/química , DNA/genética , DNA Ligases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Desoxirribonuclease IV (Fago T4-Induzido) , Endodesoxirribonucleases/fisiologia , Endonucleases Flap , Guanina/metabolismo , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/fisiologia , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/fisiologia , Uracila-DNA Glicosidase
19.
J Mol Biol ; 305(1): 95-107, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11114250

RESUMO

Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.


Assuntos
ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Toxinas Botulínicas , Clostridium botulinum/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Catálise , Cristalização , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Estrutura Secundária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
20.
J Mol Biol ; 296(1): 295-309, 2000 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-10656833

RESUMO

Human catalase is an heme-containing peroxisomal enzyme that breaks down hydrogen peroxide to water and oxygen; it is implicated in ethanol metabolism, inflammation, apoptosis, aging and cancer. The 1. 5 A resolution human enzyme structure, both with and without bound NADPH, establishes the conserved features of mammalian catalase fold and assembly, implicates Tyr370 as the tyrosine radical, suggests the structural basis for redox-sensitive binding of cognate mRNA via the catalase NADPH binding site, and identifies an unexpectedly substantial number of water-mediated domain contacts. A molecular ruler mechanism based on observed water positions in the 25 A-long channel resolves problems for selecting hydrogen peroxide. Control of water-mediated hydrogen bonds by this ruler selects for the longer hydrogen peroxide and explains the paradoxical effects of mutations that increase active site access but lower catalytic rate. The heme active site is tuned without compromising peroxide binding through a Tyr-Arg-His-Asp charge relay, arginine residue to heme carboxylate group hydrogen bonding, and aromatic stacking. Structures of the non-specific cyanide and specific 3-amino-1,2, 4-triazole inhibitor complexes of human catalase identify their modes of inhibition and help reveal the catalytic mechanism of catalase. Taken together, these resting state and inhibited human catalase structures support specific, structure-based mechanisms for the catalase substrate recognition, reaction and inhibition and provide a molecular basis for understanding ethanol intoxication and the likely effects of human polymorphisms.


Assuntos
Catalase/química , Catalase/metabolismo , Inibidores Enzimáticos/metabolismo , NADP/metabolismo , Sequência de Aminoácidos , Amitrol (Herbicida)/química , Amitrol (Herbicida)/metabolismo , Sítios de Ligação , Catalase/antagonistas & inibidores , Catálise , Cristalização , Cristalografia por Raios X , Cianetos/química , Cianetos/metabolismo , Elétrons , Inibidores Enzimáticos/química , Heme/metabolismo , Humanos , Ligação de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , NADP/química , Conformação Proteica , Especificidade por Substrato , Tirosina/análogos & derivados , Tirosina/química , Tirosina/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA