Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; : e3010, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978282

RESUMO

Since 2014, highly pathogenic avian influenza (HPAI) H5 viruses of clade 2.3.4.4 have been dominating the outbreaks across Europe, causing massive deaths among poultry and wild birds. However, the factors shaping these broad-scale outbreak patterns, especially those related to waterbird community composition, remain unclear. In particular, we do not know whether these risk factors differ from those of other H5 clades. Addressing this knowledge gap is important for predicting and preventing future HPAI outbreaks. Using extensive waterbird survey datasets from about 6883 sites, we here explored the effect of waterbird community composition on HPAI H5Nx (clade 2.3.4.4) spatial patterns in the 2016/2017 and 2020/2021 epidemics in Europe, and compared it with the 2005/2006 HPAI H5N1 (clade 2.2) epidemic. We showed that HPAI H5 occurrences in wild birds in the three epidemics were strongly associated with very similar waterbird community attributes, which suggested that, in nature, similar interspecific transmission processes operate between the HPAI H5 subtypes or clades. Importantly, community phylogenetic diversity consistently showed a negative association with H5 occurrence in all three epidemics, suggesting a dilution effect of phylogenetic diversity. In contrast, waterbird community variables showed much weaker associations with HPAI H5Nx occurrence in poultry. Our results demonstrate that models based on previous epidemics can predict future HPAI H5 patterns in wild birds, implying that it is important to include waterbird community factors in future HPAI studies to predict outbreaks and improve surveillance activities.

2.
Environ Sci Technol ; 57(48): 19263-19273, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956992

RESUMO

Differences in sediment biogeochemistry among tidal marsh features with different hydrological and geomorphological characteristics, including marsh interiors, marsh edges, first-order channels, and third-order channels, can result in spatial variation in MeHg production and availability. To better understand the link between MeHg production in sediments and bioaccumulation in primary and secondary consumer invertebrates and fish, we characterized mesoscale spatial variation in sediment biogeochemistry and MeHg concentrations of sediments, water, and consumer tissues among marsh features. Our results indicated that marsh interiors had biogeochemical conditions, including greater concentrations of organic matter and sulfate reduction rates, that resulted in greater MeHg concentrations in sediments and surface water particulates from marsh interiors compared to other features. Tissue MeHg concentrations of consumers also differed among features, with greater concentrations from marsh edges and interiors compared to channels. This spatial mismatch of MeHg concentrations in sediments and water compared to those in consumers may have resulted from differences in behavior and physiology among consumers that influenced the spatial scale over which MeHg was integrated into tissues. Our results highlight the importance of sampling across a suite of marsh features and considering the behavioral and physiological traits of sentinel taxa for contaminant monitoring studies.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Cadeia Alimentar , Áreas Alagadas , Bioacumulação , Poluentes Químicos da Água/análise , Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
3.
Conserv Biol ; 34(2): 416-426, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31268188

RESUMO

Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration-network connectivity and the impacts of site loss are not completely understood. We used GPS tracking data on 4 bird species in the Asian flyways to construct migration networks and proposed a framework for assessing network connectivity for migratory species. We used a node-removal process to identify stopover sites with the highest impact on connectivity. In general, migration networks with fewer stopover sites were more vulnerable to habitat loss. Node removal in order from the highest to lowest degree of habitat loss yielded an increase of network resistance similar to random removal. In contrast, resistance increased more rapidly when removing nodes in order from the highest to lowest betweenness value (quantified by the number of shortest paths passing through the specific node). We quantified the risk of migration network collapse and identified crucial sites by first selecting sites with large contributions to network connectivity and then identifying which of those sites were likely to be removed from the network (i.e., sites with habitat loss). Among these crucial sites, 42% were not designated as protected areas. Setting priorities for site protection should account for a site's position in the migration network, rather than only site-specific characteristics. Our framework for assessing migration-network connectivity enables site prioritization for conservation of migratory species.


Un Enfoque de Redes para Priorizar los Esfuerzos de Conservación para las Aves Migratorias Resumen La pérdida del hábitat puede disparar el colapso de las redes de migración al aislar los sitios de reproducción de las aves migratorias de aquellos sitios que no se usan para la reproducción. En teoría, la pérdida del hábitat puede tener impactos muy diferentes dependiendo de la importancia del sitio dentro del corredor migratorio. Sin embargo, la conectividad entre las redes de migración y los impactos de la pérdida de los sitios no están del todo comprendidos. Usamos los datos de seguimiento por GPS de cuatro especies de aves en las rutas de vuelo de Asia para construir redes de migración y propusimos un marco de trabajo para evaluar la conectividad de las redes en las especies migratorias. Usamos un proceso de extracción de nodos para identificar los sitios de escala con el mayor impacto sobre la conectividad. En general, las redes de migración con menos sitios de escala fueron más vulnerables a la pérdida del hábitat. La extracción de nodos en orden del grado más alto al más bajo resultó en un incremento de resistencia de la red similar a la extracción al azar. Al contrario, la resistencia incrementó más rápidamente cuando la extracción de los nodos fue en orden del más alto al más bajo valor de intermediación (cuantificado por el número de caminos más cortos que pasan por un nodo específico). Cuantificamos el riesgo de colapso de la red de migración e identificamos sitios cruciales al seleccionar primero los sitios con mayores contribuciones a la conectividad de la red y después identificar cuáles de esos sitios tenían probabilidad de ser removidos de la red (es decir, sitios con pérdida de hábitat). Entre estos sitios cruciales, el 42% no estaban designados como áreas protegidas. El establecimiento de prioridades para la protección de un sitio debería considerar la posición del sitio dentro de la red de migración, en lugar de sólo considerar las características específicas del sitio. Nuestro marco de trabajo para la evaluación de la conectividad de la red de migración permite la priorización de sitios para la conservación de las especies migratorias.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Animais , Aves , Cruzamento , Ecossistema
4.
PLoS Comput Biol ; 14(9): e1006439, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212472

RESUMO

In Bangladesh, the poultry industry is an economically and socially important sector, but it is persistently threatened by the effects of H5N1 highly pathogenic avian influenza. Thus, identifying the optimal control policy in response to an emerging disease outbreak is a key challenge for policy-makers. To inform this aim, a common approach is to carry out simulation studies comparing plausible strategies, while accounting for known capacity restrictions. In this study we perform simulations of a previously developed H5N1 influenza transmission model framework, fitted to two separate historical outbreaks, to assess specific control objectives related to the burden or duration of H5N1 outbreaks among poultry farms in the Dhaka division of Bangladesh. In particular, we explore the optimal implementation of ring culling, ring vaccination and active surveillance measures when presuming disease transmission predominately occurs from premises-to-premises, versus a setting requiring the inclusion of external factors. Additionally, we determine the sensitivity of the management actions under consideration to differing levels of capacity constraints and outbreaks with disparate transmission dynamics. While we find that reactive culling and vaccination policies should pay close attention to these factors to ensure intervention targeting is optimised, across multiple settings the top performing control action amongst those under consideration were targeted proactive surveillance schemes. Our findings may advise the type of control measure, plus its intensity, that could potentially be applied in the event of a developing outbreak of H5N1 amongst originally H5N1 virus-free commercially-reared poultry in the Dhaka division of Bangladesh.


Assuntos
Galinhas/virologia , Surtos de Doenças/veterinária , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Aves Domésticas/virologia , Animais , Bangladesh/epidemiologia , Controle de Doenças Transmissíveis , Simulação por Computador , Geografia , Política de Saúde , Influenza Aviária/diagnóstico , Modelos Teóricos
5.
Environ Manage ; 64(1): 20-26, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31049645

RESUMO

Seagrasses are highly productive, but human nearshore activities have reduced their global distribution by >29% since the twentieth century. In the United States and Canada, the native seagrass Zostera marina (eelgrass) provides habitat for many species and multiple ecosystem services. By supplying spawning surface for fish and substrate for invertebrates, eelgrass creates foraging areas for high densities of migratory birds. Eelgrass beds stabilize sediment, protect adjacent shorelines, improve water quality, and sequester carbon in their underlying substrate. San Francisco Bay (California, USA) is a significant estuary for eelgrass, and recent surveys show that eelgrass beds are in decline. Protecting eelgrass is a conservation priority for federal, state, and local agencies, yet few studies have documented the extent of eelgrass loss due to human impacts such as boat anchoring. The purpose of our study was to provide factual evidence for policy makers by quantifying damage to eelgrass caused by illegal anchor-outs in San Francisco Bay, an issue that has been disputed for decades. Using aerial imagery and GIS analyses, we determined the amount of direct damage to eelgrass caused by anchor-outs. We found that boats damage up to 41% of the eelgrass bed, and each boat may cause up to 0.3 ha of damage. These results can be used to inform decisions about anchor-outs by stakeholders and government agencies. Furthermore, our efficient analytical approach could be implemented in other coastal regions.


Assuntos
Zosteraceae , Animais , Baías , Canadá , Ecossistema , São Francisco , Navios
6.
Proc Natl Acad Sci U S A ; 112(1): 172-7, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535385

RESUMO

The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.


Assuntos
Migração Animal , Aves/virologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/virologia , Animais , Ásia/epidemiologia , Aves/genética , Surtos de Doenças/estatística & dados numéricos , Fluxo Gênico , Redes Reguladoras de Genes , Geografia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/transmissão , Filogenia , Estatística como Assunto , Fatores de Tempo
7.
Korean J Parasitol ; 54(5): 685-691, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27853128

RESUMO

Chewing lice (Phthiraptera) that parasitize the globally threatened swan goose Anser cygnoides have been long recognized since the early 19th century, but those records were probably biased towards sampling of captive or domestic geese due to the small population size and limited distribution of its wild hosts. To better understand the lice species parasitizing swan geese that are endemic to East Asia, we collected chewing lice from 14 wild geese caught at 3 lakes in northeastern Mongolia. The lice were morphologically identified as 16 Trinoton anserinum (Fabricius, 1805), 11 Ornithobius domesticus Arnold, 2005, and 1 Anaticola anseris (Linnaeus, 1758). These species are known from other geese and swans, but all of them were new to the swan goose. This result also indicates no overlap in lice species between older records and our findings from wild birds. Thus, ectoparasites collected from domestic or captive animals may provide biased information on the occurrence, prevalence, host selection, and host-ectoparasite interactions from those on wild hosts.


Assuntos
Doenças das Aves/parasitologia , Gansos , Infestações por Piolhos/veterinária , Ftirápteros/anatomia & histologia , Ftirápteros/classificação , Animais , Infestações por Piolhos/parasitologia , Microscopia , Mongólia
8.
Waterbirds ; 38(2): 123-132, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27695389

RESUMO

Population connectivity is an important consideration in studies of disease transmission and biological conservation, especially with regard to migratory species. Determining how and when different subpopulations intermingle during different phases of the annual cycle can help identify important geographical regions or features as targets for conservation efforts and can help inform our understanding of continental-scale disease transmission. In this study, stable isotopes of hydrogen and carbon in contour feathers were used to assess the degree of molt-site fidelity among Bar-headed Geese (Anser indicus) captured in north-central Mongolia. Samples were collected from actively molting Bar-headed Geese (n = 61), and some individual samples included both a newly grown feather (still in sheath) and an old, worn feather from the bird's previous molt (n = 21). Although there was no difference in mean hydrogen isotope ratios for the old and new feathers, the isotopic variance in old feathers was approximately three times higher than that of the new feathers, which suggests that these birds use different and geographically distant molting locations from year to year. To further test this conclusion, online data and modeling tools from the isoMAP website were used to generate probability landscapes for the origin of each feather. Likely molting locations were much more widespread for old feathers than for new feathers, which supports the prospect of low molt-site fidelity. This finding indicates that population connectivity would be greater than expected based on data from a single annual cycle, and that disease spread can be rapid even in areas like Mongolia where Bar-headed Geese generally breed in small isolated groups.

9.
Proc Natl Acad Sci U S A ; 108(23): 9516-9, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21628594

RESUMO

Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the world. We show that those populations of geese that winter at sea level in India are capable of passing over the Himalayas in 1 d, typically climbing between 4,000 and 6,000 m in 7-8 h. Surprisingly, these birds do not rely on the assistance of upslope tailwinds that usually occur during the day and can support minimum climb rates of 0.8-2.2 km·h(-1), even in the relative stillness of the night. They appear to strategically avoid higher speed winds during the afternoon, thus maximizing safety and control during flight. It would seem, therefore, that bar-headed geese are capable of sustained climbing flight over the passes of the Himalaya under their own aerobic power.


Assuntos
Altitude , Migração Animal/fisiologia , Voo Animal/fisiologia , Gansos/fisiologia , Animais , Atividade Motora/fisiologia , Estações do Ano , Fatores de Tempo , Tempo (Meteorologia)
10.
Ecol Indic ; 45: 266-273, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25045322

RESUMO

Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values or latitudes of molting sites. However, population-level parameters derived from the satellite-tracking data, such as mean distance between wintering and molting locations and variation in migration distance, were reflected by means and variation of the stable isotope values. Our findings call into question the relevance of the rainfall isotope map for Asia for linking feather isotopes to molting locations, and underscore the need for extensive ground truthing in the form of feather-based isoscapes. Nevertheless, stable isotopes from feathers could inform disease models by characterizing the degree to which regional breeding populations interact at common wintering locations. Feather isotopes also could aid in surveying wintering locations to determine where high-resolution tracking techniques (e.g. satellite tracking) could most effectively be employed. Moreover, intrinsic markers such as stable isotopes offer the only means of inferring movement information from birds that have died as a result of infection. In the absence of feather based-isoscapes, we recommend a combination of isotope analysis and satellite-tracking as the best means of generating aggregate movement data for informing disease models.

11.
Ecol Evol ; 14(2): e10894, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314315

RESUMO

Light detection and ranging (lidar) has emerged as a valuable tool for examining the fine-scale characteristics of vegetation. However, lidar is rarely used to examine coastal wetland vegetation or the habitat selection of small mammals. Extensive anthropogenic modification has threatened the endemic species in the estuarine wetlands of the California coast, such as the endangered salt marsh harvest mouse (Reithrodontomys raviventris; SMHM). A better understanding of SMHM habitat selection could help managers better protect this species. We assessed the ability of airborne topographic lidar imagery in measuring the vegetation structure of SMHM habitats in a coastal wetland with a narrow range of vegetation heights. We also aimed to better understand the role of vegetation structure in habitat selection at different spatial scales. Habitat selection was modeled from data compiled from 15 small mammal trapping grids collected in the highly urbanized San Francisco Estuary in California, USA. Analyses were conducted at three spatial scales: microhabitat (25 m2), mesohabitat (2025 m2), and macrohabitat (~10,000 m2). A suite of structural covariates was derived from raw lidar data to examine vegetation complexity. We found that adding structural covariates to conventional habitat selection variables significantly improved our models. At the microhabitat scale in managed wetlands, SMHM preferred areas with denser and shorter vegetation and selected for proximity to levees and taller vegetation in tidal wetlands. At the mesohabitat scale, SMHM were associated with a lower percentage of bare ground and with pickleweed (Salicornia pacifica) presence. All covariates were insignificant at the macrohabitat scale. Our results suggest that SMHM preferentially selected microhabitats with access to tidal refugia and mesohabitats with consistent food sources. Our findings showed that lidar can contribute to improving our understanding of habitat selection of wildlife in coastal wetlands and help to guide future conservation of an endangered species.

13.
Mol Ecol ; 21(24): 5986-99, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22971007

RESUMO

Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.


Assuntos
Migração Animal , Patos/virologia , Variação Genética , Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , California/epidemiologia , Plumas , Fluxo Gênico , Influenza Aviária/epidemiologia , Filogenia , Prevalência , Estações do Ano
14.
Transbound Emerg Dis ; 69(5): 2898-2912, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34974641

RESUMO

Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl-livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl-domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks.


Assuntos
Doenças dos Bovinos , Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Bovinos , Patos , Humanos , Gado , Aves Domésticas , Água , Áreas Alagadas
15.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906292

RESUMO

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Assuntos
Vírus da Influenza A , Influenza Aviária , Migração Animal , Animais , Animais Selvagens , Patos , Humanos , Influenza Aviária/epidemiologia , Prevalência , Estados Unidos/epidemiologia
16.
Int J Health Geogr ; 10: 60, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22085837

RESUMO

BACKGROUND: Characterizing the interface between wild and domestic animal populations is increasingly recognized as essential in the context of emerging infectious diseases (EIDs) that are transmitted by wildlife. More specifically, the spatial and temporal distribution of contact rates between wild and domestic hosts is a key parameter for modeling EIDs transmission dynamics. We integrated satellite telemetry, remote sensing and ground-based surveys to evaluate the spatio-temporal dynamics of indirect contacts between wild and domestic birds to estimate the risk that avian pathogens such as avian influenza and Newcastle viruses will be transmitted between wildlife to poultry. We monitored comb ducks (Sarkidiornis melanotos melanotos) with satellite transmitters for seven months in an extensive Afro-tropical wetland (the Inner Niger Delta) in Mali and characterise the spatial distribution of backyard poultry in villages. We modelled the spatial distribution of wild ducks using 250-meter spatial resolution and 8-days temporal resolution remotely-sensed environmental indicators based on a Maxent niche modelling method. RESULTS: Our results show a strong seasonal variation in potential contact rate between wild ducks and poultry. We found that the exposure of poultry to wild birds was greatest at the end of the dry season and the beginning of the rainy season, when comb ducks disperse from natural water bodies to irrigated areas near villages. CONCLUSIONS: Our study provides at a local scale a quantitative evidence of the seasonal variability of contact rate between wild and domestic bird populations. It illustrates a GIS-based methodology for estimating epidemiological contact rates at the wildlife and livestock interface integrating high-resolution satellite telemetry and remote sensing data.


Assuntos
Animais Domésticos/virologia , Animais Selvagens/virologia , Transmissão de Doença Infecciosa/prevenção & controle , Patos/virologia , Influenza Aviária/transmissão , Aves Domésticas/virologia , Animais , Aves , Ecossistema , Estudos de Avaliação como Assunto , Influenza Aviária/epidemiologia , Mali , Modelos Biológicos , Níger , Densidade Demográfica , Dinâmica Populacional , Análise de Regressão , Telemetria
17.
Ecol Evol ; 11(4): 1866-1876, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33614009

RESUMO

Dietary specialization is common in animals and has important implications for individual fitness, inter- and intraspecific competition, and the adaptive potential of a species. Diet composition can be influenced by age- and sex-related factors including an individual's morphology, social status, and acquired skills; however, specialization may only be necessary when competition is intensified by high population densities or increased energetic demands.To better understand the role of age- and sex-related dietary specialization in facilitating seasonal resource partitioning, we inferred the contribution of biofilm, microphytobenthos, and benthic invertebrates to the diets of western sandpipers (Calidris mauri) from different demographic groups during mid-winter (January/February) and at the onset of the breeding migration (April) using stable isotope mixing models. Western sandpipers are sexually dimorphic with females having significantly greater body mass and bill length than males.Diet composition differed between seasons and among demographic groups. In winter, prey consumption was similar among demographic groups, but, in spring, diet composition differed with bill length and body mass explaining 31% of the total variation in diet composition. Epifaunal invertebrates made up a greater proportion of the diet in males which had lesser mass and shorter bills than females. Consumption of Polychaeta increased with increasing bill length and was greatest in adult females. In contrast, consumption of microphytobenthos, thought to be an important food source for migrating sandpipers, increased with decreasing bill length and was greatest in juvenile males.Our results provide the first evidence that age- and sex-related dietary specialization in western sandpipers facilitate seasonal resource partitioning that could reduce competition during spring at the onset of the breeding migration.Our study underscores the importance of examining resource partitioning throughout the annual cycle to inform fitness and demographic models and facilitate conservation efforts.

18.
Geospat Health ; 16(1)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34000793

RESUMO

Long-distance migrations influence the dynamics of hostpathogen interactions and understanding the role of migratory waterfowl in the spread of the highly pathogenic avian influenza viruses (HPAIV) is important. While wild geese have been associated with outbreak events, disease ecology of closely related species has not been studied to the same extent. The swan goose (Anser cygnoides) and the bar-headed goose (Anser indicus) are congeneric species with distinctly different HPAIV infection records; the former with few and the latter with numerous records. We compared movements of these species, as well as the more distantly related whooper swan (Cygnus cygnus) through their annual migratory cycle to better understand exposure to HPAIV events and how this compares within and between congeneric and noncongeneric species. In spite of their record of fewer infections, swan geese were more likely to come in contact with disease outbreaks than bar-headed geese. We propose two possible explanations: i) frequent prolonged contact with domestic ducks increases innate immunity in swan geese, and/or ii) the stress of high-elevation migration reduces immunity of bar-headed geese. Continued efforts to improve our understanding of species-level pathogen response is critical to assessing disease transmission risk.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Surtos de Doenças , Gansos , Influenza Aviária/epidemiologia
19.
Virus Evol ; 7(1): veaa093, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34956648

RESUMO

Understanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region. Results indicated that multiple ducks (Northern Shoveler and Northern Pintail) hosted segments that shared ancestry with HPAI H5 from both clade 2.2.1 and clade 2.3.4 supporting the role of Anseriformes in linking viral populations in East Asia and Africa over large distances. Quantifying the overlap between wild ducks and H5N1-infected poultry revealed an increasing interface in late winter peaking in early spring when ducks expanded their range before migration, with key differences in the timing of poultry contact risk between local and long-distance migrants.

20.
PLoS Pathog ; 4(8): e1000127, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18704172

RESUMO

The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H5N2/genética , Influenza Aviária/genética , Filogenia , Animais , Sequência de Bases , Aves , Genótipo , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/transmissão , Dados de Sequência Molecular , Nigéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA