Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29656891

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Progressão da Doença , Neoplasias Renais/genética , Neoplasias Renais/patologia , Mutação , Regiões 5' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 5 , Feminino , Dosagem de Genes , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Telomerase/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
2.
Cell ; 149(5): 994-1007, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22608083

RESUMO

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica , Evolução Clonal , Mutação , Algoritmos , Aberrações Cromossômicas , Feminino , Humanos , Mutação Puntual
3.
Cell ; 149(5): 979-93, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22608084

RESUMO

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Assuntos
Neoplasias da Mama/genética , Análise Mutacional de DNA , Estudo de Associação Genômica Ampla , Mutação , Desaminase APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminase/metabolismo , Feminino , Genes BRCA1 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
4.
Nature ; 580(7805): 640-646, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350471

RESUMO

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Assuntos
Análise Mutacional de DNA , Endométrio/citologia , Endométrio/metabolismo , Epitélio/metabolismo , Saúde , Mutação , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Carcinogênese/genética , Células Clonais/citologia , Neoplasias do Endométrio/genética , Endométrio/patologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Paridade/genética , Fatores de Tempo , Adulto Jovem
5.
Pediatr Blood Cancer ; 71(3): e30810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102963

RESUMO

We report a unique case of high-grade B-cell lymphoma, not otherwise specified in a 5-year-old child. Whole-genome sequencing revealed a DDX3X::MLLT10 fusion, usually seen in T-cell acute lymphoblastic leukaemia (ALL). This suggests the novel idea that MLLT10 fusions are capable of driving B-cell malignancies. An IGH deletion usually only seen in adults was also found. These unique genetic findings provide novel insights into B-cell lymphomagenesis. The child remains in remission 7 year post chemotherapy, which demonstrates that novel complex molecular findings do not always denote high-risk disease.


Assuntos
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Criança , Pré-Escolar , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfócitos B , Fatores de Transcrição/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , RNA Helicases DEAD-box/genética
6.
J Pathol ; 259(2): 119-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36426824

RESUMO

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However, previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1 rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated 15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The overall concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illustrate that FOSL1 and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fibroma Desmoplásico , Fibroma , Neoplasias de Tecidos Moles , Humanos , Fibroma Desmoplásico/diagnóstico , Fibroma Desmoplásico/genética , Fibroma Desmoplásico/patologia , Fibroma/genética , Rearranjo Gênico , Hibridização In Situ , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Ubiquitina Tiolesterase/genética
7.
J Cutan Pathol ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797972

RESUMO

Cutaneous spindle cell neoplasms can be challenging to diagnose using routine histopathological techniques alone, and the growing repertoire of molecular studies can assist in diagnosis. We describe a cutaneous spindle cell neoplasm characterized by a COL3A1::PDGFRA rearrangement predicted to lead to constitutive activation of the PDGFRA kinase domain. The lesion shows some similarities to dermatofibrosarcoma protuberans and also benign and epithelioid fibrous histiocytomas but is distinct from these entities histopathologically and molecularly. This tumor is considered to represent an entity in the spectrum of PDGFR-driven cutaneous mesenchymal neoplasms.

8.
Pediatr Dev Pathol ; 27(3): 260-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38098239

RESUMO

Wilms tumor (WT) is the commonest cause of renal cancer in children. In Europe, a diagnosis is made for most cases on typical clinical and radiological findings, prior to pre-operative chemotherapy. Here, we describe a case of a young boy presenting with a large abdominal tumor, associated with raised serum alpha-fetoprotein (AFP) levels at diagnosis. Given the atypical features present, a biopsy was taken, and histology was consistent with WT, showing triphasic WT, with epithelial, stromal, and blastemal elements present, and positive WT1 and CD56 immunohistochemical staining. During pre-operative chemotherapy, serial serum AFP measurements showed further increases, despite a radiological response, before a subsequent fall to normal following nephrectomy. The resection specimen was comprised of ~55% and ~45% stromal and epithelial elements, respectively, with no anaplasia, but immunohistochemistry using AFP staining revealed positive mucinous intestinal epithelium, consistent with the serum AFP observations. The lack of correlation between tumor response and serum AFP levels in this case highlights a more general clinical unmet need to identify WT-specific circulating tumor markers.


Assuntos
Biomarcadores Tumorais , Neoplasias Renais , Tumor de Wilms , alfa-Fetoproteínas , Humanos , Tumor de Wilms/diagnóstico , Tumor de Wilms/patologia , Tumor de Wilms/sangue , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Masculino , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Neoplasias Renais/diagnóstico , Neoplasias Renais/patologia , Neoplasias Renais/sangue , Nefrectomia
9.
Br J Cancer ; 127(1): 137-144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35449451

RESUMO

BACKGROUND: Whole-genome sequencing (WGS) of cancers is becoming an accepted component of oncological care, and NHS England is currently rolling out WGS for all children with cancer. This approach was piloted during the 100,000 genomes (100 K) project. Here we share the experience of the East of England Genomic Medicine Centre (East-GMC), reporting the feasibility and clinical utility of centralised WGS for individual children locally. METHODS: Non-consecutive children with solid tumours were recruited into the pilot 100 K project at our Genomic Medicine Centre. Variant catalogues were returned for local scrutiny and appraisal at dedicated genomic tumour advisory boards with an emphasis on a detailed exploration of potential clinical value. RESULTS: Thirty-six children, representing one-sixth of the national 100 K cohort, were recruited through our Genomic Medicine Centre. The diagnoses encompassed 23 different solid tumour types and WGS provided clinical utility, beyond standard-of-care assays, by refining (2/36) or changing (4/36) diagnoses, providing prognostic information (8/36), defining pathogenic germline mutations (1/36) or revealing novel therapeutic opportunities (8/36). CONCLUSION: Our findings demonstrate the feasibility and clinical value of centralised WGS for children with cancer. WGS offered additional clinical value, especially in diagnostic terms. However, our experience highlights the need for local expertise in scrutinising and clinically interpreting centrally derived variant calls for individual children.


Assuntos
Neoplasias , Medicina Estatal , Criança , Estudos de Viabilidade , Mutação em Linhagem Germinativa , Humanos , Neoplasias/genética , Sequenciamento Completo do Genoma
10.
Neuropathol Appl Neurobiol ; 47(6): 882-888, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33534137

RESUMO

In a case of astroblastoma, methylation analysis was uninformative, with no clustering with known CNS-HGNET-MN1 cases. Whole genome sequencing however identified a novel MN1-GTSE1 gene fusion (image), confirming the diagnosis of astroblastoma, as well as an EWSR1-PATZ1 gene fusion. Whole genome sequencing, alongside methylation profiling and conventional neuropathology, will continue to lead to improved diagnostics and prognostication for children with brain tumours.


Assuntos
Neoplasias Encefálicas/genética , Fusão Gênica/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias Neuroepiteliomatosas/genética , Proteínas Repressoras/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Feminino , Humanos , Neoplasias Neuroepiteliomatosas/diagnóstico , Neoplasias Neuroepiteliomatosas/patologia
11.
Genome Res ; 27(4): 613-625, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28179366

RESUMO

Drug resistance is an almost inevitable consequence of cancer therapy and ultimately proves fatal for the majority of patients. In many cases, this is the consequence of specific gene mutations that have the potential to be targeted to resensitize the tumor. The ability to uniformly saturate the genome with point mutations without chromosome or nucleotide sequence context bias would open the door to identify all putative drug resistance mutations in cancer models. Here, we describe such a method for elucidating drug resistance mechanisms using genome-wide chemical mutagenesis allied to next-generation sequencing. We show that chemically mutagenizing the genome of cancer cells dramatically increases the number of drug-resistant clones and allows the detection of both known and novel drug resistance mutations. We used an efficient computational process that allows for the rapid identification of involved pathways and druggable targets. Such a priori knowledge would greatly empower serial monitoring strategies for drug resistance in the clinic as well as the development of trials for drug-resistant patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano , Acúmulo de Mutações , Taxa de Mutação , Linhagem Celular Tumoral , Humanos , Modelos Genéticos , Mutação Puntual
12.
Nature ; 513(7518): 422-425, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043003

RESUMO

The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.


Assuntos
Linhagem da Célula/genética , Células Clonais/citologia , Células Clonais/metabolismo , Genoma/genética , Mutagênese/genética , Mutação/genética , Animais , Relógios Biológicos/genética , Divisão Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Taxa de Mutação , Organoides/citologia , Organoides/metabolismo , Filogenia , Análise de Sequência de DNA , Cauda/citologia
13.
Genome Res ; 25(6): 814-24, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-25963125

RESUMO

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.


Assuntos
DNA Mitocondrial/genética , Genoma Humano , Genoma Mitocondrial/genética , Neoplasias/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/genética , Cromossomos/genética , Variações do Número de Cópias de DNA , Reparo do DNA por Junção de Extremidades , Replicação do DNA , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Análise de Sequência de DNA
15.
Nature ; 486(7403): 400-4, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22722201

RESUMO

All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Mutagênese/genética , Mutação/genética , Oncogenes/genética , Fatores Etários , Neoplasias da Mama/classificação , Neoplasias da Mama/patologia , Citosina/metabolismo , Análise Mutacional de DNA , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Gradação de Tumores , Reprodutibilidade dos Testes , Transdução de Sinais/genética
16.
Hum Mol Genet ; 24(17): 4848-61, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056227

RESUMO

Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.


Assuntos
Proteínas de Transporte/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Interneurônios/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Biologia Computacional , Feminino , Expressão Gênica , Genes Ligados ao Cromossomo X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Proteínas Nucleares , Especificidade de Órgãos/genética , Linhagem , Peixe-Zebra
17.
Nature ; 469(7331): 539-42, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21248752

RESUMO

The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética
18.
Nature ; 463(7279): 360-3, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20054297

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.


Assuntos
Carcinoma de Células Renais/genética , Genes da Neurofibromatose 2 , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Carcinoma de Células Renais/patologia , Hipóxia Celular/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases , Humanos , Neoplasias Renais/patologia , Mutação/genética , Análise de Sequência de DNA
19.
J Med Genet ; 52(4): 269-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612912

RESUMO

BACKGROUND: Trichothiodystrophy (TTD) is a group of rare autosomal recessive disorders that variably affect a wide range of organs derived from the neuroectoderm. The key diagnostic feature is sparse, brittle, sulfur deficient hair that has a 'tiger-tail' banding pattern under polarising light microscopy. PATIENTS AND METHODS: We describe two male cousins affected by TTD associated with microcephaly, profound intellectual disability, sparse brittle hair, aged appearance, short stature, facial dysmorphism, seizures, an immunoglobulin deficiency, multiple endocrine abnormalities, cerebellar hypoplasia and partial absence of the corpus callosum, in the absence of cellular photosensitivity and ichthyosis. Obligate female carriers showed 100% skewed X-chromosome inactivation. Linkage analysis and Sanger sequencing of 737 X-chromosome exons and whole exome sequencing was used to find the responsible gene and mutation. RESULTS: Linkage analysis localised the disease allele to a 7.75 Mb interval from Xq23-q25. We identified a nonsense mutation in the highly conserved RNF113A gene (c.901 C>T, p.Q301*). The mutation segregated with the disease in the family and was not observed in over 100,000 control X chromosomes. The mutation markedly reduced RNF113A protein expression in extracts from lymphoblastoid cell lines derived from the affected individuals. CONCLUSIONS: The association of RNF113A mutation with non-photosensitive TTD identifies a new locus for these disorders on the X chromosome. The extended phenotype within this family includes panhypopituitarism, cutis marmorata and congenital short oesophagus.


Assuntos
Códon sem Sentido , Proteínas de Ligação a DNA/genética , Síndromes de Tricotiodistrofia/genética , Adolescente , Sequência de Aminoácidos , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Humanos , Masculino , Dados de Sequência Molecular , Linhagem
20.
Nat Genet ; 39(9): 1127-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704778

RESUMO

Nonsense-mediated mRNA decay (NMD) is of universal biological significance. It has emerged as an important global RNA, DNA and translation regulatory pathway. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype and one with the FG phenotype. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Linhagem Celular Transformada , Códon sem Sentido , Análise Mutacional de DNA , Saúde da Família , Feminino , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Dados de Sequência Molecular , Linhagem , Estabilidade de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA