Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 70(5): 1690-1706, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37042496

RESUMO

Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.


Assuntos
6-Fitase , Ácido Fítico , Humanos , Animais , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , 6-Fitase/metabolismo , Ecossistema , Fósforo , Fosfatos
2.
Arch Microbiol ; 203(6): 3219-3228, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33830286

RESUMO

The present study aimed to evaluate the potential of cell surface and extracellular proteins in regulation of intestinal epithelial barrier (IEB) function. Eight potentially probiotic L. reuteri strains were evaluated for presence of mapA gene and its expression on co-culturing with the Caco-2 cells. The ability of untreated (Viable), heat-inactivated, 5 M LiCL treated L. reuteri strains as well as their cell-free supernatant (CFS) to modulate expression of IEB function genes (hBD-2, hBD-3, claudin-1 and occludin) was also evaluated. Caco-2 cells were treated with cell surface and extracellular protein extracts and investigated for change in expression of targeted IEB function genes. The results showed that mapA gene is present in all the tested L. reuteri strains and expression of mapA and its receptors (anxA13 and palm) increase significantly on co-culturing of L. reuteri and Caco-2 cells. Also, up-regulated expression of IEB function genes was observed on co-culturing of L. reuteri (viable, heat-inactivated and CFS) and their protein extracts with Caco-2 cells in contrast to down-regulation observed with the pathogenic strain of Salmonella typhi. Therefore, this study concludes that the cell surface and extracellular protein from L. reuteri act as an effective mediator molecules to regulate IEB function.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Mucosa Intestinal , Limosilactobacillus reuteri , Proteínas de Membrana , Probióticos , Proteínas de Bactérias/metabolismo , Células CACO-2 , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Limosilactobacillus reuteri/metabolismo , Proteínas de Membrana/metabolismo , Probióticos/metabolismo
3.
Prep Biochem Biotechnol ; 50(9): 865-873, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32393146

RESUMO

Biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a promising alternative to the conventional chemical synthesis approach. In this study, cost-effective synthesis of AgNPs was attempted using leaves extract of Litchi chinensis. Bio-reduction reaction for the synthesis of NPs was checked by confirming the presence of AgNPs in solution by UV-vis spectrophotometry and with further characterization by fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Surface plasmon resonance (SPR) band showed absorption peak at 422 nm indicating the formation of AgNPs, and FTIR spectra confirmed the presence of biological molecules involved in AgNPs synthesis. TEM analysis revealed the spherical shape of AgNPs with particle size distribution in a range of 5-15 nm. Further, the biosynthesized AgNPs showed significant bactericidal and sporicidal activity against model spore former Bacillus subtilis. AgNPs at concentrations ranging from 25 to 100 µg/mL showed bactericidal activity with inhibition zone ranging from 4-19 mm and sporicidal activity at 100-200 µg/mL in a range of 4.46-61.6% with an exposure time of 2-8 h. These findings exhibit distinctive potential of biogenic AgNPs for their efficient use in developing novel bactericidal and sporicidal agent against spore forming bacilli.


Assuntos
Antibacterianos/química , Química Verde/métodos , Litchi/química , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Folhas de Planta/química , Prata/farmacologia , Esporos Bacterianos/efeitos dos fármacos
4.
3 Biotech ; 13(1): 2, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36506812

RESUMO

Biogenic amines (BAs) are widely found in food as a consequence of diverse factors including free amino acid availability, microbial production of decarboxylases, and variations in processing and storage conditions. Hence, BAs are considered as an important marker for determining the freshness and quality of food. Owing to the documentation of BAs in different dietary products, their numerous negative impacts on human health have reported to be a serious concern in past few decades. Therefore, the quantification of these chemical species in food becomes crucial as it can immensely contributes toward control of new episodes on food intoxication in humans. In this line, various chromatographic and colorimetric methods have been developed to detect BAs. However, these methods are in use from a longer time, still are limited by high cost, lengthy procedures, huge infrastructure and skilled personnel requirements that hinder their on-field application. In pursuit of a reliable method offering accurate detection of BAs, this review presents the state-of-the-art of electrochemical strategies for BAs sensing in food. The core of the review discusses about the widely employed electrochemical transducers, such as amperometric, potentiometric, impedimetric and conductometric-based BAs biosensors with significant findings of research work conducted previously. The application of electrochemical sensors to analyze BAs in different fields including food systems (fermented and non-fermented types) and smart packaging systems has been reviewed. Moreover, existing challenges and further available prospects for the development of rapid, facile, and sensitive electrochemical strategies for on-site determination of BAs have also been discussed.

5.
Curr Res Food Sci ; 6: 100416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632434

RESUMO

According to the results of this study, the paper strip biosensor can detect pesticide at very low concentration like fungicide, organochlorine, organophosphate, carbamate, and herbicide group ranges from 1 to 10, 1-50, 250-500, 1-50, and 1 µg/L, respectively in animal feed, water, milk and soil. This is a significant improvement from the previous study, which found that the paper strip biosensor could only detect pesticide levels of up to 500 or 1000 µg/L. A total of 436 samples were collected from the dairy farm, including 58 samples of green feed, 54 samples of dry feed, 45 samples of concentrated feed, 41 samples of fermented feed, 49 samples of manure, 54 samples of soil, and 86 samples of milk. PSA (Primary Secondary Amine) and MgSO4 (1:2 ratio) were used to remove pigments from dairy farm samples to prevent the enzyme-pesticide interaction leading to colour development on the strip, which was successfully achieved. Using a strip-based test and an optimized extraction protocol, pesticides were detected in 38.49% in the samples. Limit of Detection of 15 pesticides from the organochlorine, organophosphate, carbamate, neonicotinoid, pyrethroid, ryanoid, strobilurins, and triazole groups recommended for use in dairy farms were evaluated in feed/fodder. Pesticides were being detected in various dairy farm matrices using the newly developed test. The developed technology can be used as a semi-quantitative test for pesticides monitoring in the dairy farm as well as for screening of primary produce under field condition for organic certification of various food/feed commodities.

6.
3 Biotech ; 7(4): 259, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28744426

RESUMO

The present study was undertaken with the objective to assess the effect of distinct stereoisomeric forms of nutrient germinants (selected sugars and amino acids) on the process of germination onset in dormant spores of Bacillus megaterium MTCC 2949. In this respect, epimers of glucose and enantiomers of alanine were employed in current work. When supplemented with these stereoisomers, spores were found germinated only with d-glucose and d-mannose among epimers of glucose and only with l-alanine among enantiomers of alanine. Interestingly, germination in spores was observed to negligible extent with d-galactose and d-alanine. These findings were obtained on the basis of four type of germination assays, namely reduction in absorbance measured at 600 nm (≤5 to ≥30%), refractility examination (phase bright and dark), esterase assay [fluorescence units 0.455-94.62 (×103)] and fluorescent staining (fluorescent/non-fluorescent signals). Understanding of spores germination process and efficacy of different forms of germinants to trigger germination is of immense importance. It aids in development of sensing and sterilization indicating tools employing chiefly spores as biorecognition elements and in uncovering the mechanism of diseases, food contamination and spoilages resulting from the germination of spores. The findings of current work support the possibility to explore such germination mechanism by significantly giving the clue for potential existence of stereospecific receptor sites on the surface of B. megaterium spores. Perhaps, these sites can specifically differentiate and recognize stereoisomerically diverse forms of germinants for induction of germination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA