Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891908

RESUMO

Chronic inflammation causes muscle wasting. Because most inflammatory cytokine signals are mediated via TGF-ß-activated kinase-1 (TAK1) activation, inflammatory cytokine-induced muscle wasting may be ameliorated by the inhibition of TAK1 activity. The present study was undertaken to clarify whether TAK1 inhibition can ameliorate inflammation-induced muscle wasting. SKG/Jcl mice as an autoimmune arthritis animal model were treated with a small amount of mannan as an adjuvant to enhance the production of TNF-α and IL-1ß. The increase in these inflammatory cytokines caused a reduction in muscle mass and strength along with an induction of arthritis in SKG/Jcl mice. Those changes in muscle fibers were mediated via the phosphorylation of TAK1, which activated the downstream signaling cascade via NF-κB, p38 MAPK, and ERK pathways, resulting in an increase in myostatin expression. Myostatin then reduced the expression of muscle proteins not only via a reduction in MyoD1 expression but also via an enhancement of Atrogin-1 and Murf1 expression. TAK1 inhibitor, LL-Z1640-2, prevented all the cytokine-induced changes in muscle wasting. Thus, TAK1 inhibition can be a new therapeutic target of not only joint destruction but also muscle wasting induced by inflammatory cytokines.


Assuntos
Citocinas , MAP Quinase Quinase Quinases , Atrofia Muscular , Animais , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/tratamento farmacológico , Camundongos , Citocinas/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/tratamento farmacológico , Miostatina/metabolismo , Miostatina/antagonistas & inibidores , Proteínas Musculares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Fosforilação/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Zearalenona/farmacologia , Zearalenona/análogos & derivados
2.
J Bone Miner Metab ; 41(3): 388-403, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856824

RESUMO

INTRODUCTION: Multiple myeloma (MM) is a malignancy of plasma cells with characteristic bone disease. Despite recent great strides achieved in MM treatment owing to the implementation of new anti-MM agents, MM is still incurable and bone destruction remains a serious unmet issue in patients with MM. APPROACH: In this review, we will summarize and discuss the mechanisms of the formation of bone disease in MM and the available preclinical and clinical evidence on the treatment for MM bone disease. CONCLUSIONS: MM cells produce a variety of cytokines to stimulate receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone destruction with rapid loss of bone. MM cells alter the microenvironment through bone destruction where they colonize, which in turn favors tumor growth and survival, thereby forming a vicious cycle between tumor progression and bone destruction. Denosumab or zoledronic acid is currently recommended to be administered at the start of treatment in newly diagnosed patients with MM with bone disease. Proteasome inhibitors and the anti-CD38 monoclonal antibody daratumumab have been demonstrated to exert bone-modifying activity in responders. Besides their anti-tumor activity, the effects of new anti-MM agents on bone metabolism should be more precisely analyzed in patients with MM. Because prognosis in patients with MM has been significantly improved owing to the implementation of new agents, the therapeutic impact of bone-modifying agents should be re-estimated in the era of these new agents.


Assuntos
Doenças Ósseas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Doenças Ósseas/tratamento farmacológico , Osso e Ossos/patologia , Ácido Zoledrônico , Citocinas , Microambiente Tumoral
3.
Calcif Tissue Int ; 111(3): 331-344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750933

RESUMO

Our previous gene profiling analysis showed that the transcription cofactor vestigial-like 3 (VGLL3) gene expression was upregulated by mechanical tension in the mouse cranial suture, coinciding with accelerated osteoblast differentiation. Therefore, we hypothesized that VGLL3 plays a significant role in osteogenic differentiation. To clarify the function of VGLL3 in osteoblasts, we examined its expression characteristics in mouse bone tissue and the osteoblastic cell line MC3T3-E1. We further examined the effects of Vgll3 knockdown on osteoblast differentiation and bone morphogenetic protein (BMP) signaling. In the mouse cranial suture, where membranous ossification occurs, VGLL3 was immunohistochemically detected mostly in the nucleus of osteoblasts, preosteoblasts, and fibroblastic cells. VGLL3 expression in MC3T3-E1 cells was transient and peaked at a relatively early stage of differentiation. RNA sequencing revealed that downregulated genes in Vgll3-knockdown cells were enriched in gene ontology terms associated with osteoblast differentiation. Interestingly, most of the upregulated genes were related to cell division. Targeted Vgll3 knockdown markedly suppressed the expression of major osteogenic transcription factors (Runx2, Sp7/osterix, and Dlx5) and osteoblast differentiation. It also attenuated BMP signaling; moreover, exogenous BMP2 partially restore osteogenic transcription factors' expression in Vgll3-knockdown cells. Furthermore, overexpression of Vgll3 increased the expression of osteogenic transcription factors. These results suggest that VGLL3 plays a critical role in promoting osteoblast differentiation and that part of the process is mediated by BMP signaling. Further elucidation of VGLL3 function will increase our understanding of osteogenesis and skeletal disease etiology.


Assuntos
Osteogênese , Fatores de Transcrição , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
4.
Haematologica ; 106(5): 1401-1413, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32273474

RESUMO

Along with the tumor progression, the bone marrow microenvironment is skewed in multiple myeloma (MM), which underlies the unique pathophysiology of MM and confers aggressiveness and drug resistance in MM cells. TGF-ß-activated kinase-1 (TAK1) mediates a wide range of intracellular signaling pathways. We demonstrate here that TAK1 is constitutively overexpressed and phosphorylated in MM cells, and that TAK1 inhibition suppresses the activation of NF-κB, p38MAPK, ERK and STAT3 to decrease the expression of critical mediators for MM growth and survival, including PIM2, MYC, Mcl-1, IRF4, and Sp1, along with a substantial reduction in the angiogenic factor VEGF in MM cells. Intriguingly, TAK1 phosphorylation was also induced along with upregulation of vascular cell adhesion molecule-1 (VCAM-1) in bone marrow stromal cells (BMSCs) in cocultures with MM cells, which facilitated MM cell-BMSC adhesion while inducing IL-6 production and receptor activator of nuclear factor κ-Β ligand (RANKL) expression by BMSCs. TAK1 inhibition effectively impaired MM cell adhesion to BMSCs to disrupt the support of MM cell growth and survival by BMSCs. Furthermore, TAK1 inhibition suppressed osteoclastogenesis enhanced by RANKL in cocultures of bone marrow cells with MM cells, and restored osteoblastic differentiation suppressed by MM cells or inhibitory factors for osteoblastogenesis overproduced in MM. Finally, treatment with the TAK1 inhibitor LLZ1640-2 markedly suppressed MM tumor growth and prevented bone destruction and loss in mouse MM models. Therefore, TAK1 inhibition may be a promising therapeutic option targeting not only MM cells but also the skewed bone marrow microenvironment in MM.


Assuntos
MAP Quinase Quinase Quinases , Mieloma Múltiplo , Osteólise , Animais , Células da Medula Óssea , Camundongos , Mieloma Múltiplo/tratamento farmacológico , NF-kappa B , Osteoclastos , Ligante RANK/genética , Microambiente Tumoral
5.
Br J Haematol ; 180(2): 246-258, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29327347

RESUMO

Proviral Integrations of Moloney virus 2 (PIM2) is overexpressed in multiple myeloma (MM) cells, and regarded as an important therapeutic target. Here, we aimed to validate the therapeutic efficacy of different types of PIM inhibitors against MM cells for their possible clinical application. Intriguingly, the thiazolidine-2,4-dione-family compounds SMI-16a and SMI-4a reduced PIM2 protein levels and impaired MM cell survival preferentially in acidic conditions, in contrast to other types of PIM inhibitors, including AZD1208, CX-6258 and PIM447. SMI-16a also suppressed the drug efflux function of breast cancer resistance protein, minimized the sizes of side populations and reduced in vitro colony-forming capacity and in vivo tumourigenic activity in MM cells, suggesting impairment of their clonogenic capacity. PIM2 is known to be subject to ubiquitination-independent proteasomal degradation. Consistent with this, the proteasome inhibitors bortezomib and carfilzomib increased PIM2 protein levels in MM cells without affecting its mRNA levels. However, SMI-16a mitigated the PIM2 protein increase and cooperatively enhanced anti-MM effects in combination with carfilzomib. Collectively, the thiazolidine-2,4-dione-family compounds SMI-16a and SMI-4a uniquely reduce PIM2 protein in MM cells, which may contribute to their profound efficacy in addition to their immediate kinase inhibition. Their combination with proteasome inhibitors is envisioned.


Assuntos
Antineoplásicos/farmacologia , Mieloma Múltiplo/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas Proto-Oncogênicas/metabolismo
6.
Biochim Biophys Acta ; 1863(4): 650-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26795455

RESUMO

Posttranslational modifications including histone methylation regulate gene transcription through directly affecting the structure of chromatin. Trimethylation of histone H3K27 (H3K27me3) contributes to gene silencing and the histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes the methylation of H3K27me3, followed by the activation of gene expression. In the present study, we explored the roles of Jmjd3 in regulating osteoblast apoptosis. Knockdown of Jmjd3 promoted osteoblast apoptosis induced by serum deprivation with decreased mitochondrial membrane potential and increased levels of caspase-3 activation, PARP cleavage, and DNA fragmentation. B cell lymphoma-2 (Bcl-2), an anti-apoptotic protein, was down-regulated by knockdown of Jmjd3 through retaining H3K27me3 on its promoter region. Knockdown of Jmjd3 increased the pro-apoptotic activity of Bim through inhibiting ERK-dependent phosphorylation of Bim. Protein kinase D1 (PKD1), which stimulates ERK phosphorylation, decreased in the Jmjd3-knockdown cells and introduction of PKD1 relieved osteoblast apoptosis in the Jmjd3-knockdown cells through increasing ERK-regulated Bim phosphorylation. These results suggest that Jmjd3 regulates osteoblast apoptosis through targeting Bcl-2 expression and Bim phosphorylation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Histona Desmetilases com o Domínio Jumonji/fisiologia , Proteínas de Membrana/metabolismo , Osteoblastos/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2 , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/farmacologia
8.
Lab Invest ; 96(10): 1050-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27617401

RESUMO

Osteosarcoma is the most frequent primary bone tumor. Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes, such as cell cycle, growth, apoptosis, and signal transduction. In this study, we examined the expression and function of PP2A Cα in osteosarcoma cells. PP2A Cα expression was expected to be higher in malignant osteosarcoma tissues. PP2A Cα expression level and PP2A activity was higher in malignant osteosarcoma LM8 cells compared with that in primary osteoblasts and in the osteoblast-like cell line MC3T3-E1. Okadaic acid, an inhibitor of PP2A, reduced cell viability and induced apoptosis in LM8 cells. PP2A Cα-knockdown LM8 cells (shPP2A) exhibited less striking filopodial and lamellipodial structures than that in original LM8 cells. Focal adhesion kinase phosphorylation and NF-κB activity decreased in shPP2A-treated cells. Sensitivity to serum deprivation-induced apoptosis increased in shPP2A-treated cells, accompanied by a lower expression level of anti-apoptotic BCL-2 in these cells. Reduction of PP2A Cα resulted in a decrease in the migration ability of LM8 cells in vitro. Reduction in PP2A Cα levels in vivo suppressed proliferation and metastasis in LM8 cells. PP2A Cα expression was also higher in human osteosarcoma MG63 and SaOS-2 cells than that in primary osteoblasts and MC3T3-E1 cells, and reduction in PP2A Cα levels suppressed the cell proliferation rate and migration ability of MG63 cells. These results indicate that PP2A Cα has a critical role in the proliferation and metastasis of osteosarcoma cells; therefore, its inhibition could potentially suppress the malignancy of osteosarcoma cells.


Assuntos
Osteossarcoma/enzimologia , Proteína Fosfatase 2/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Camundongos , Metástase Neoplásica
10.
Biochim Biophys Acta ; 1843(11): 2376-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24949891

RESUMO

Serine/threonine protein phosphatase 2A (PP2A) regulates several physiological processes such as the cell cycle, cell growth, apoptosis, and signal transduction. In this study, we examined the expression and role of PP2A Cα in adipocyte differentiation. PP2A Cα expression and PP2A activity decreased during adipocyte differentiation in C3H10T1/2 and 3T3-L1 cells and the expression of adipocyte marker genes such as PPARγ and adiponectin increased. To further clarify the role of PP2A Cα in adipocyte differentiation, we constructed PP2A knockdown cells by infecting C3H10T1/2 cells with a lentivirus expressing a shRNA specific for the PP2A Cα (shPP2A cells). Silencing of PP2A Cα in C3H10T1/2 cells dramatically stimulated adipocyte differentiation and lipid accumulation, which were accompanied by expression of adipocyte marker genes. Silencing of PP2A Cα suppressed Wnt10b expression and reduced the levels of the inactivated form of GSK-3ß (phospho-GSK-3ß), leading to the reduction of ß-catenin levels in the nucleus and its transcriptional activity. Treatment with LiCl, a GSK-3ß inhibitor, and inhibition of PPARγ expression suppressed the accelerated adipogenesis of shPP2A cells. Our data indicate that PP2A Cα plays an important role in the regulation of adipocyte differentiation by regulating the Wnt/GSK-3ß/ß-catenin pathway and PPARγ expression.

11.
J Cell Biochem ; 116(11): 2628-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25920016

RESUMO

Alteration of methylation status of lysine 27 on histone H3 (H3K27) associates with dramatic changes in gene expression in response to various differentiation signals. Demethylation of H3K27 is controlled by specific histone demethylases including ubiquitously transcribed tetratricopeptide repeat X chromosome (Utx). However, the role of Utx in osteoblast differentiation remains unknown. In this study, we examined whether Utx should be involved in osteoblast differentiation. Expression of Utx increased during osteoblast differentiation in MC3T3-E1 cells and primary osteoblasts. GSK-J1, a potent inhibitor of H3K27 demethylase, increased the levels of trimethylated H3K27 (H3K27me3) and decreased the expressions of Runx2 and Osterix and ALP activity in MC3T3-E1 cells. Stable knockdown of Utx by shRNA attenuated osteoblast differentiation and decreased ALP activity, calcium content, and bone-related gene expressions. Silencing of Utx increased the level of H3K27me3 on the promoter regions of Runx2 and Osterix and decreased the promoter activities of Runx2 and Osterix. Taken together, our present results propose that Utx plays important roles in osteoblast differentiation by controlling the expressions of Runx2 and Osterix.


Assuntos
Calcificação Fisiológica , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Histona Desmetilases/metabolismo , Osteoblastos/citologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Camundongos , Osteoblastos/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp7
12.
J Cell Biochem ; 116(9): 1957-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25739386

RESUMO

Double-stranded RNA-dependent protein kinase (PKR) is involved in cell cycle progression, cell proliferation, cell differentiation, tumorgenesis, and apoptosis. We previously reported that PKR is required for differentiation and calcification in osteoblasts. TNF-α plays a key role in osteoclast differentiation. However, it is unknown about the roles of PKR in the TNF-α-induced osteoclast differentiation. The expression of PKR in osteoclast precursor RAW264.7 cells increased during TNF-α-induced osteoclastogenesis. The TNF-α-induced osteoclast differentiation in bone marrow-derived macrophages and RAW264.7 cells was markedly suppressed by the pretreatment of PKR inhibitor, 2-aminopurine (2AP), as well as gene silencing of PKR. The expression of gene markers in the differentiated osteoclasts including TRAP, Calcitonin receptor, cathepsin K, and ATP6V0d2 was also suppressed by the 2AP treatment. Bone resorption activity of TNF-α-induced osteoclasts was also supressed by 2AP treatment. Inhibition of PKR supressed the TNF-α-induced activation of NF-κB and MAPK in RAW264.7 cells. 2AP inhibited both the nuclear translocation of NF-κB and its transcriptional activity in RAW264.7 cells. 2AP inhibited the TNF-α-induced expression of NFATc1 and c-fos, master transcription factors in osteoclastogenesis. TNF-α-induced nuclear translocation of NFATc1 in mature osteoclasts was clearly inhibited by the 2AP treatment. The PKR inhibitor C16 decreased the TNF-α-induced osteoclast formation and bone resorption in mouse calvaria. The present study indicates that PKR is necessary for the TNF-α-induced osteoclast differentiation in vitro and in vivo.


Assuntos
2-Aminopurina/administração & dosagem , Reabsorção Óssea/prevenção & controle , Osteoclastos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos adversos , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo , 2-Aminopurina/farmacologia , Animais , Reabsorção Óssea/etiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Osteoclastos/citologia , Osteoclastos/enzimologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , eIF-2 Quinase/genética
14.
Int J Hematol ; 119(6): 626-630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581458

RESUMO

As multiple myeloma (MM) progresses, immune effector cells decrease in number and function and become exhausted. This remains an insurmountable clinical issue that must be addressed by development of novel modalities to revitalize anti-MM immunity. Human Vγ9Vδ2 T (Vδ2+ γδ T) cells serve as the first line of defense against pathogens as well as tumors and can be expanded ex vivo from peripheral blood mononuclear cells (PBMCs) upon treatment with amino-bisphosphonates in combination with IL-2. Here, we demonstrated that next-generation immunomodulators called cereblon E3 ligase modulators (CELMoDs), as well as lenalidomide and pomalidomide, expanded Th1-like Vδ2+ γδ T cells from PBMCs in the presence of zoledronic acid (ZA). However, the expansion of Th1-like Vδ2+ γδ T cells by these immunomodulatory drugs was abolished under IL-2 blockade, although IL-2 production was induced in PBMCs. BTN3A1 triggers phosphoantigen presentation to γδ T-cell receptors and is required for γδ T-cell expansion and activation. ZA but not these immunomodulatory drugs upregulated BTN3A1 in monocytes. These results suggest that immunomodulatory drugs and ZA have cooperative roles in expansion of Th1-like Vδ2+ γδ T cells, and provide the important knowledge for clinical application of human Vδ2+ γδ T cells as effector cells.


Assuntos
Difosfonatos , Imidazóis , Ativação Linfocitária , Mieloma Múltiplo , Receptores de Antígenos de Linfócitos T gama-delta , Talidomida , Ácido Zoledrônico , Ácido Zoledrônico/farmacologia , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Butirofilinas , Interleucina-2/farmacologia , Lenalidomida/farmacologia , Ubiquitina-Proteína Ligases , Proliferação de Células/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Antígenos CD
15.
Int J Hematol ; 119(3): 303-315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245883

RESUMO

Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of ß5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of ß5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Mieloma Múltiplo/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases
17.
Int J Hematol ; 118(1): 88-98, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37039914

RESUMO

Proteasome inhibitors (PIs) can preferentially restore bone in bone-defective lesions of patients with multiple myeloma (MM) who respond favorably to these drugs. Most prior in vitro studies on PIs used continuous exposure to low PI concentrations, although pharmacokinetic analysis in patients has shown that serum concentrations of PIs change in a pulsatile manner. In the present study, we explored the effects of pulsatile treatment with PIs on bone metabolism to simulate in vivo PI pharmacokinetics. Pulsatile treatment with bortezomib, carfilzomib, or ixazomib induced MM cell death but only marginally affected the viability of osteoclasts (OCs) with F-actin ring formation. Pulsatile PI treatment suppressed osteoclastogenesis in OC precursors and bone resorption by mature OCs. OCs robustly enhanced osteoblastogenesis in cocultures with OCs and MC3T3-E1 pre-osteoblastic cells, indicating OC-mediated coupling to osteoblastogenesis. Importantly, pulsatile PI treatment did not impair robust OC-mediated osteoblastogenesis. These results suggest that PIs might sufficiently reduce MM cell-derived osteoblastogenesis inhibitors to permit OC-driven bone formation coupling while suppressing OC differentiation and activity in good responders to PIs. OC-mediated coupling to osteoblastogenesis appears to be a predominant mechanism for preferential occurrence of bone regeneration at sites of osteoclastic bone destruction in good responders.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/patologia , Osteogênese , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Osteoclastos/metabolismo , Osteoclastos/patologia
18.
EJHaem ; 4(3): 667-678, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37601887

RESUMO

Adult T-cell leukaemia/lymphoma (ATL) remains incurable. The NF-κB and interferon regulatory factor 4 (IRF4) signalling pathways are among the critical survival pathways for the progression of ATL. TGF-ß-activated kinase 1 (TAK1), an IκB kinase-activating kinase, triggers the activation of NF-κB. The resorcylic acid lactone LL-Z1640-2 is a potent irreversible inhibitor of TAK1/extracellular signal-regulated kinase 2 (ERK2). We herein examined the therapeutic efficacy of LL-Z1640-2 against ATL. LL-Z1640-2 effectively suppressed the in vivo growth of ATL cells. It induced in vitro apoptosis and inhibited the nuclear translocation of p65/RelA in ATL cells. The knockdown of IRF4 strongly induced ATL cell death while downregulating MYC. LL-Z1640-2 as well as the NF-κB inhibitor BAY11-7082 decreased the expression of IRF4 and MYC at the protein and mRNA levels, indicating the suppression of the NF-κB-IRF4-MYC axis. The treatment with LL-Z1640-2 also mitigated the phosphorylation of p38 MAPK along with the expression of CC chemokine receptor 4. Furthermore, the inhibition of STAT3/5 potentiated the cytotoxic activity of LL-Z1640-2 against IL-2-responsive ATL cells in the presence of IL-2. Therefore, LL-Z1640-2 appears to be an effective treatment for ATL. Further studies are needed to develop more potent compounds that retain the active motifs of LL-Z1640-2.

19.
Blood Adv ; 7(6): 1019-1032, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36129197

RESUMO

Multiple myeloma (MM) preferentially expands and acquires drug resistance in the bone marrow (BM). We herein examined the role of histone deacetylase 1 (HDAC1) in the constitutive activation of the master transcription factor IRF4 and the prosurvival mediator PIM2 kinase in MM cells. The knockdown or inhibition of HDAC1 by the class I HDAC inhibitor MS-275 reduced the basal expression of IRF4 and PIM2 in MM cells. Mechanistically, the inhibition of HDAC1 decreased IRF4 transcription through histone hyperacetylation and inhibiting the recruitment of RNA polymerase II at the IRF4 locus, thereby reducing IRF4-targeting genes, including PIM2. In addition to the transcriptional regulation of PIM2 by the HDAC1-IRF4 axis, PIM2 was markedly upregulated by external stimuli from BM stromal cells and interleukin-6 (IL-6). Upregulated PIM2 contributed to the attenuation of the cytotoxic effects of MS-275. Class I HDAC and PIM kinase inhibitors cooperatively suppressed MM cell growth in the presence of IL-6 and in vivo. Therefore, the present results demonstrate the potential of the simultaneous targeting of the intrinsic HDAC1-IRF4 axis plus externally activated PIM2 as an efficient therapeutic option for MM fostered in the BM.


Assuntos
Histona Desacetilase 1 , Interleucina-6 , Benzamidas , Piridinas
20.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670994

RESUMO

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in purine catabolism that acts as a novel regulator of adipogenesis. In pathological states, xanthine oxidoreductase activity increases to produce excess reactive oxygen species (ROS). The nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical inducer of antioxidants, which is bound and repressed by a kelch-like ECH-associated protein 1 (Keap1) in the cytoplasm. The Keap1-Nrf2 axis appears to be a major mechanism for robust inducible antioxidant defenses. Here, we demonstrate that febuxostat, a xanthine oxidase inhibitor, alleviates the increase in adipose tissue mass in obese mouse models with a high-fat diet or ovariectomy. Febuxostat disrupts in vitro adipocytic differentiation in adipogenic media. Adipocytes appeared at day 7 in absence or presence of febuxostat were 160.8 ± 21.2 vs. 52.5 ± 12.7 (p < 0.01) in 3T3−L1 cells, and 126.0 ± 18.7 vs. 55.3 ± 13.4 (p < 0.01) in 10T1/2 cells, respectively. Adipocyte differentiation was further enhanced by the addition of hydrogen peroxide, which was also suppressed by febuxostat. Interestingly, febuxostat, but not allopurinol (another xanthine oxidase inhibitor), rapidly induced the nuclear translocation of Nrf2 and facilitated the degradation of Keap1, similar to the electrophilic Nrf2 activator omaveloxolone. These results suggest that febuxostat alleviates adipogenesis under oxidative conditions, at least in part by suppressing ROS production and Nrf2 activation. Regulation of adipocytic differentiation by febuxostat is expected to inhibit obesity due to menopause or overeating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA