Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 60(23): 18017-18023, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34779197

RESUMO

Antiperovskites are a promising candidate structure for the exploration of new materials. We discovered an antiperovskite phosphide, LaPd3P, following our recent synthesis of APd3P (A = Ca, Sr, Ba). While APd3P and (Ca,Sr)Pd3P were found to be tetragonal or orthorhombic systems, LaPd3P is a new prototype cubic system (a = 9.0317(1) Å) with a noncentrosymmetric space group (I4̅3m). LaPd3P exhibited superconductivity with a transition temperature (Tc) of 0.28 K. The upper critical field, Debye temperature, and Sommerfeld constant (γ) were determined to be 0.305(8) kOe, 267(1) K, and 6.06(4) mJ mol-1 K-2 f.u.-1, respectively. We performed first-principles electronic band structure calculations for LaPd3P and compared the theoretical and experimental results. The calculated Sommerfeld constant (2.24 mJ mol-1 K-2 f.u.-1) was much smaller than the experimental value of γ because the Fermi energy (EF) was located slightly below the density of states (DOS) pseudogap. This difference was explained by the increase in the DOS at EF due to the approximately 5 atom % La deficiency (hole doping) in the sample. The observed Tc value was much lower than that estimated using the Bardeen-Cooper-Schrieffer equation. To explain the discrepancy, we examined the possibility of an unconventional superconductivity in LaPd3P arising from the lack of space inversion symmetry.

2.
Inorg Chem ; 59(17): 12397-12403, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845611

RESUMO

In this study, we succeeded in synthesizing new antiperovskite phosphides MPd3P (M = Ca, Sr, Ba) and discovered the appearance of a superconducting phase (0.17 ≤ x ≤ 0.55) in a solid solution (Ca1-xSrx)Pd3P. Three perovskite-related crystal structures were identified in (Ca1-xSrx)Pd3P, and a phase diagram was built on the basis of experimental results. The first phase transition from centrosymmetric (Pnma) to noncentrosymmetric orthorhombic (Aba2) occurred in CaPd3P near room temperature. The phase transition temperature decreased as Ca2+ was replaced with a larger-sized isovalent Sr2+. Bulk superconductivity at a critical temperature (Tc) of approximately 3.5 K was observed in a range of x = 0.17-0.55; this was associated with the centrosymmetric orthorhombic phase. Thereafter, a noncentrosymmetric tetragonal phase (I41md) remained stable for 0.6 ≤ x ≤ 1.0, and superconductivity was significantly suppressed as samples with x = 0.75 and 1.0 showed Tc values as low as 0.32 K and 57 mK, respectively. For further substitution with a larger-sized isovalent Ba2+, namely, (Sr1-yBay)Pd3P, the tetragonal phase continued throughout the composition range. BaPd3P no longer showed superconductivity down to 20 mK. Since the inversion symmetry of structure and superconductivity can be precisely controlled in (Ca1-xSrx)Pd3P, this material may offer a unique opportunity to study the relationship between inversion symmetry and superconductivity.

3.
Proc Natl Acad Sci U S A ; 111(46): 16309-13, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25378706

RESUMO

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

4.
Phys Rev Lett ; 112(17): 177201, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836269

RESUMO

We report the results of SQUID and torque magnetometry of an organic spin-1/2 triangular-lattice κ-H(3)(Cat-EDT-TTF)(2). Despite antiferromagnetic exchange coupling at 80-100 K, we observed no sign of antiferromagnetic order down to 50 mK owing to spin frustration on the triangular lattice. In addition, we found nearly temperature-independent susceptibility below 3 K associated with Pauli paramagnetism. These observations suggest the development of gapless quantum spin liquid as the ground state. On the basis of a comparative discussion, we point out that the gapless quantum spin liquid states in organic systems share a possible mechanism, namely the formation of a band with a Fermi surface possibly attributed to spinons.

5.
J Phys Condens Matter ; 35(40)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37369230

RESUMO

Quantum oscillations (QOs) in magnetic torque and electrical resistivity were measured to investigate the electronic structure ofß-ReO2, a candidate hourglass nodal chain (NC) metal (Dirac loop chain metal). All the de Haas-van Alphen oscillation branches measured at 30 mK in magnetic fields of up to 17.5 T were consistent with first-principles calculations predicting four Fermi surfaces (FSs). The small-electron FS of the four FSs exhibited a very small cyclotron mass, 0.059 times that of the free electrons, which is likely related to the linear dispersion of the energy band. The consistency between the QO results and band calculations indicates the presence of the hourglass NC predicted forß-ReO2in the vicinity of the Fermi energy.

6.
Phys Rev Lett ; 107(7): 077002, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902419

RESUMO

We report the first observation of a single-vortex flow in a mesoscopic superconductor. A flow of a single vortex is successfully controlled by an rf current superimposed on a dc current, evidence of which is provided by voltage steps in current-voltage (I-V) characteristics. Irrespective of the number of vortices confined to the disk, we unambiguously observe that when a single vortex inside the disk is driven out of the disk, another vortex enters the disk similarly to two balls colliding in billiards: only one vortex passes through the Al disk at the same time in mesoscopic systems.

7.
Phys Rev Lett ; 107(17): 176402, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107545

RESUMO

We show that the Fermi surface (FS) in the antiferromagnetic phase of BaFe(2)As(2) is composed of one hole and two electron pockets, all of which are three dimensional and closed, in sharp contrast to the FS observed by angle-resolved photoemission spectroscopy. Considerations on the carrier compensation and Sommerfeld coefficient rule out existence of unobserved FS pockets of significant sizes. A standard band structure calculation reasonably accounts for the observed FS, despite the overestimated ordered moment. The mass enhancement, the ratio of the effective mass to the band mass, is 2-3.

8.
Phys Rev Lett ; 107(16): 166402, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22107409

RESUMO

Cyclotron resonance (CR) measurements for the Fe-based superconductor KFe(2)As(2) are performed. One signal for CR is observed, and is attributed to the two-dimensional α Fermi surface at the Γ point. We found a large discrepancy in the effective masses of CR [(3.4±0.05)m(e) (m(e) is the free-electron mass)] and de Haas-van Alphen results, a direct evidence of mass enhancement due to electronic correlation. A comparison of the CR and de Haas-van Alphen results shows that both intra- and interband electronic correlations contribute to the mass enhancement in KFe(2)As(2).

9.
Adv Mater ; 31(30): e1901942, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31157482

RESUMO

Recently the metastable 1T'-type VIB-group transition metal dichalcogenides (TMDs) have attracted extensive attention due to their rich and intriguing physical properties, including superconductivity, valleytronics physics, and topological physics. Here, a new layered WS2 dubbed "2M" WS2 , is constructed from 1T' WS2 monolayers, is synthesized. Its phase is defined as 2M based on the number of layers in each unit cell and the subordinate crystallographic system. Intrinsic superconductivity is observed in 2M WS2 with a transition temperature Tc of 8.8 K, which is the highest among TMDs not subject to any fine-tuning process. Furthermore, the electronic structure of 2M WS2 is found by Shubnikov-de Haas oscillations and first-principles calculations to have a strong anisotropy. In addition, topological surface states with a single Dirac cone, protected by topological invariant Z2 , are predicted through first-principles calculations. These findings reveal that the new 2M WS2 might be an interesting topological superconductor candidate from the VIB-group transition metal dichalcogenides.

10.
Nat Commun ; 9(1): 1509, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666404

RESUMO

A quantum spin liquid (QSL) is an exotic state of matter in condensed-matter systems, where the electron spins are strongly correlated, but conventional magnetic orders are suppressed down to zero temperature because of strong quantum fluctuations. One of the most prominent features of a QSL is the presence of fractionalized spin excitations, called spinons. Despite extensive studies, the nature of the spinons is still highly controversial. Here we report magnetocaloric-effect measurements on an organic spin-1/2 triangular-lattice antiferromagnet, showing that electron spins are decoupled from a lattice in a QSL state. The decoupling phenomena support the gapless nature of spin excitations. We further find that as a magnetic field is applied away from a quantum critical point, the number of spin states that interact with lattice vibrations is strongly reduced, leading to weak spin-lattice coupling. The results are compared with a model of a strongly correlated QSL near a quantum critical point.

11.
Nat Commun ; 7: 13494, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841262

RESUMO

A quantum spin-liquid state, an exotic state of matter, appears when strong quantum fluctuations enhanced by competing exchange interactions suppress a magnetically ordered state. Generally, when an ordered state is continuously suppressed to 0 K by an external parameter, a quantum phase transition occurs. It exhibits critical scaling behaviour, characterized only by a few basic properties such as dimensions and symmetry. Here we report the low-temperature magnetic torque measurements in an organic triangular-lattice antiferromagnet, κ-(BEDT-TTF)2Cu2(CN)3, where BEDT-TTF stands for bis(ethylenedithio)tetrathiafulvalene. It is found that the magnetic susceptibilities derived from the torque data exhibit a universal critical scaling, indicating the quantum critical point at zero magnetic field, and the critical exponents, γ=0.83(6) and νz=1.0(1). These exponents greatly constrain the theoretical models for the quantum spin liquid, and at present, there is no theory to explain the values, to the best of our knowledge.

13.
Phys Rev Lett ; 98(11): 116602, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501072

RESUMO

We report a large positive magnetoresistance ratio in insulating organic crystals theta-(ET)(2)CsZn(SCN)(4) at low temperatures at which they exhibit highly nonlinear current-voltage characteristics. Despite the nonlinearity, the magnetoresistance ratio is independent of the applied voltage. The magnetoresistance ratio depends little on the magnetic field direction and is described by a simple universal function of mu(B)B/k(B)T, where mu(B) is the Bohr magneton. The positive magnetoresistance may be caused by magnetic-field-induced parallel alignment of spins of mobile and localized electrons, and a resulting blockade of electrical conduction due to the Pauli exclusion principle.

14.
Phys Rev Lett ; 96(13): 136602, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712014

RESUMO

The current-voltage characteristics of layered organic crystals theta-(BEDT-TTF)2MZn(SCN)4 (M = Cs, Rb) follow the power law with a large exponent (e.g., 8.4 at 0.29 K for M = Cs) over a wide range of currents in the low-temperature insulating state. The power-law characteristics are attributed to electric field-induced unbinding of electron-hole pairs that are thermally excited in the background of the two-dimensional charge order. The magnitude of crossover electric fields from Ohmic to the power-law characteristics indicates that the electron-electron Coulomb interaction is significantly long-ranged: The screening length is greater than 10 molecule sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA