Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 146(40): 27886-27902, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39319770

RESUMO

The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO2. Iridium oxohydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with the atomic structure. While amorphous IOHs perform best, they are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain the performance. However, it is not fully understood how activity and stability are related at the atomic level, hampering rational design. Herein, we provide simple design rules (Figure 12) derived from the literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead material because they provide excellent catalyst utilization and a predictable structure. We found that IrOOH signals the chemical stability of crystalline IOHs while surpassing the activity of amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (µ3Δ-O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates from coordinative unsaturated edge sites with radical character, i.e., µ1-O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.

2.
Chem Rev ; 122(1): 1208-1272, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34788012

RESUMO

This is a review of atomic pair distribution function (PDF) analysis as applied to the study of molecular materials. The PDF method is a powerful approach to study short- and intermediate-range order in materials on the nanoscale. It may be obtained from total scattering measurements using X-rays, neutrons, or electrons, and it provides structural details when defects, disorder, or structural ambiguities obscure their elucidation directly in reciprocal space. While its uses in the study of inorganic crystals, glasses, and nanomaterials have been recently highlighted, significant progress has also been made in its application to molecular materials such as carbons, pharmaceuticals, polymers, liquids, coordination compounds, composites, and more. Here, an overview of applications toward a wide variety of molecular compounds (organic and inorganic) and systems with molecular components is presented. We then present pedagogical descriptions and tips for further implementation. Successful utilization of the method requires an interdisciplinary consolidation of material preparation, high quality scattering experimentation, data processing, model formulation, and attentive scrutiny of the results. It is hoped that this article will provide a useful reference to practitioners for PDF applications in a wide realm of molecular sciences, and help new practitioners to get started with this technique.


Assuntos
Nanoestruturas , Elétrons , Polímeros
3.
J Am Chem Soc ; 145(18): 10051-10060, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125876

RESUMO

The outstanding diversity of Zr-based frameworks is inherently linked to the variable coordination geometry of Zr-oxo clusters and the conformational flexibility of the linker, both of which allow for different framework topologies based on the same linker-cluster combination. In addition, intrinsic structural disorder provides a largely unexplored handle to further expand the accessibility of novel metal-organic framework (MOF) structures that can be formed. In this work, we report the concomitant synthesis of three topologically different MOFs based on the same M6O4(OH)4 clusters (M = Zr or Hf) and methane-tetrakis(p-biphenyl-carboxylate) (MTBC) linkers. Two novel structural models are presented based on single-crystal diffraction analysis, namely, cubic c-(4,12)MTBC-M6 and trigonal tr-(4,12)MTBC-M6, which comprise 12-coordinated clusters and 4-coordinated tetrahedral linkers. Notably, the cubic phase features a new architecture based on orientational cluster disorder, which is essential for its formation and has been analyzed by a combination of average structure refinements and diffuse scattering analysis from both powder and single-crystal X-ray diffraction data. The trigonal phase also features structure disorder, although involving both linkers and secondary building units. In both phases, remarkable geometrical distortion of the MTBC linkers illustrates how linker flexibility is also essential for their formation and expands the range of achievable topologies in Zr-based MOFs and its analogues.

4.
Inorg Chem ; 62(27): 10655-10664, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382207

RESUMO

The structure of the first lithium-containing bismuth ortho (o)-thiophosphate was determined using a combination of powder X-ray, neutron, and electron diffraction. Li60-3xBi16+x(PS4)36 with x in the range of 4.1-6.5 possesses a complex monoclinic structure [space group C2/c (No. 15)] and a large unit cell with the lattice parameters a = 15.4866 Å, b = 10.3232 Å, c = 33.8046 Å, and ß = 85.395° for Li44.4Bi21.2(PS4)36, in agreement with the structure as observed by X-ray and neutron pair distribution function analysis. The disordered distribution of lithium ions within the interstices of the dense host structure and the Li ion dynamics and diffusion pathways have been investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy, pulsed field gradient NMR diffusion measurements, and bond valence sum calculations. The total lithium ion conductivities range from 2.6 × 10-7 to 2.8 × 10-6 S cm-1 at 20 °C with activation energies between 0.29 and 0.32 eV, depending on the bismuth content. Despite the highly disordered nature of lithium ions in Li60-3xBi16+x(PS4)36, the underlying dense host framework appears to limit the dimensionality of the lithium diffusion pathways and emphasizes once more the necessity of a close inspection of the structure-property relationships in solid electrolytes.

5.
Phys Chem Chem Phys ; 24(34): 20198-20209, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950323

RESUMO

Specific aspects of the Li+ cation conductivity of anhydrous Li(SCN) are investigated, in particular the high migration enthalpy of lithium vacancies. Close inspection of impedance spectra and conductivity data reveals two bulk relaxation processes, with comparatively fast ion transport at high frequencies and slow ion migration at low frequencies. The impedance results are supported by solid state nuclear magnetic resonance (ssNMR), and pair distribution function (PDF) analysis. This behavior reflects a frequency dependent conductivity, which is related to the extremely slow thiocyanate (SCN)- anion lattice relaxation that occurs when a Li+ cation jumps to the next available site. Two possible migration models are proposed: the first model considers an asymmetric energy landscape for Li+ cation hopping, while the second model is connected to the jump relaxation model and allows for 180° rotational disorder of the (SCN)- anion. A complete kinetic analysis for the hopping of Li+ cations is presented, which reveals new fundamental insights into the ion transport mechanism of materials with complex anions.

6.
Proc Natl Acad Sci U S A ; 116(24): 11630-11639, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142656

RESUMO

A major challenge to the implementation of artificial photosynthesis (AP), in which fuels are produced from abundant materials (water and carbon dioxide) in an electrochemical cell through the action of sunlight, is the discovery of active, inexpensive, safe, and stable catalysts for the oxygen evolution reaction (OER). Multimetallic molecular catalysts, inspired by the natural photosynthetic enzyme, can provide important guidance for catalyst design, but the necessary mechanistic understanding has been elusive. In particular, fundamental transformations for reactive intermediates are difficult to observe, and well-defined molecular models of such species are highly prone to decomposition by intermolecular aggregation. Here, we present a general strategy for stabilization of the molecular cobalt-oxo cubane core (Co4O4) by immobilizing it as part of metal-organic frameworks, thus preventing intermolecular pathways of catalyst decomposition. These materials retain the OER activity and mechanism of the molecular Co4O4 analog yet demonstrate unprecedented long-term stability at pH 14. The organic linkers of the framework allow for chemical fine-tuning of activity and stability and, perhaps most importantly, provide "matrix isolation" that allows for observation and stabilization of intermediates in the water-splitting pathway.

7.
J Am Chem Soc ; 143(9): 3430-3438, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33626275

RESUMO

Covalent organic frameworks have emerged as a powerful synthetic platform for installing and interconverting dedicated molecular functions on a crystalline polymeric backbone with atomic precision. Here, we present a novel strategy to directly access amine-linked covalent organic frameworks, which serve as a scaffold enabling pore-wall modification and linkage-interconversion by new synthetic methods based on Leuckart-Wallach reduction with formic acid and ammonium formate. Frameworks connected entirely by secondary amine linkages, mixed amine/imine bonds, and partially formylated amine linkages are obtained in a single step from imine-linked frameworks or directly from corresponding linkers in a one-pot crystallization-reduction approach. The new, 2D amine-linked covalent organic frameworks, rPI-3-COF, rTTI-COF, and rPy1P-COF, are obtained with high crystallinity and large surface areas. Secondary amines, installed as reactive sites on the pore wall, enable further postsynthetic functionalization to access tailored covalent organic frameworks, with increased hydrolytic stability, as potential heterogeneous catalysts.

8.
Mol Pharm ; 17(7): 2370-2389, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293895

RESUMO

Processing procedures for inducing domain size reduction and/or amorphous phase generation can be crucial for enhancing the bioavailability of active pharmaceutical ingredients (APIs). It is important to quantify these reduced coherence phases and to detect and characterize associated structural changes, to ensure that no deleterious effects on safety, function, or stability occur. Here, X-ray powder diffraction (XRPD), total scattering pair distribution function (TSPDF) analysis, and solid-state nuclear magnetic resonance spectroscopy (SSNMR) have been performed on samples of GSK2838232B, an investigational drug for the treatment of human immunodeficiency virus (HIV). Preparations were obtained through different mechanical treatments resulting in varying extents of domain size reduction and amorphous phase generation. Completely amorphous formulations could be prepared by milling and microfluidic injection processes. Microfluidic injection was shown to result in a different local structure due to dispersion with dichloromethane (DCM). Implications of combined TSPDF and SSNMR studies to characterize molecular compounds are also discussed, in particular, the possibility to obtain a thorough structural understanding of disordered samples from different processes.


Assuntos
Fármacos Anti-HIV/farmacologia , Composição de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Triterpenos Pentacíclicos/farmacologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/química , Química Farmacêutica/métodos , Cristalização , Infecções por HIV/virologia , Humanos , Espectroscopia de Ressonância Magnética , Triterpenos Pentacíclicos/química , Pós , Difração de Raios X
9.
J Am Chem Soc ; 141(1): 431-440, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30512942

RESUMO

Thermolysis of a pair of dibenzo-7-phosphanorbornadiene compounds is shown to lead to differing behaviors: phosphinidene sulfide release and formation of amorphous P2S. These compounds, tBuP(S)A (1, A = C14H10 or anthracene; 59% isol. yield) and HP(S)A (2; 63%), are available through thionation of tBuPA and the new secondary phosphine HPA (5), prepared from Me2NPA and DIBAL-H in 50% yield. Phosphinidene sulfide [ tBuP═S] transfer is shown to proceed efficiently from 1 to 2,3-dimethyl-1,3-butadiene to form Diels-Alder product 3 with a zero-order dependence on diene. Platinum complex (Ph3P)2Pt(η2- tBuPS) (4, 47%) is also accessed from 1 and structurally characterized. In contrast, heating parent species 2 (3 h, 135 °C) under vacuum instead produces an insoluble, nonvolatile yellow residual material 6 of composition P2S that displays semiconductor properties with an optical band gap of 2.4 eV. Material 6 obtained in this manner from molecular precursor 2 is in a poorly characterized portion of the phosphorus-sulfur phase diagram and has therefore been subjected to a range of spectroscopic techniques to gain structural insight. X-ray spectroscopic and diffraction techniques, including Raman, XANES, EXAFS, and PDF, reveal 6 to have similarities with related compounds including P4S3, Hittorf's violet phosphorus. Various possible structures have been explored as well using quantum chemical calculations under the constraint that each phosphorus atom is trivalent with no terminal sulfide groups, and each sulfur atom is divalent. The structural conclusions are supported by data from phosphorus-31 magic angle spinning (MAS) solid state NMR spectroscopy, bolstering the structural comparisons to other phosphorus-sulfur systems while excluding the formulation of P2S as a simple mixture of P4S3 and phosphorus.


Assuntos
Antracenos/química , Fósforo/química , Sulfetos/química , Enxofre/química , Cor , Modelos Moleculares , Conformação Molecular
10.
Inorg Chem ; 56(15): 8837-8846, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28704045

RESUMO

The structures of Zr(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb3+ ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb3+ ions.

11.
Chemistry ; 22(37): 13162-70, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27490646

RESUMO

Lanthanide-containing nanoscale particles have been widely explored for various biomedical purposes, however, they are often prone to metal leaching. Here we have created a new coordination polymer (CP) by applying, for the first time, a stable Gd(III) chelate as building block in order to prevent any fortuitous release of free lanthanide(III) ion. The use of the Gd-DOTA-4AmP complex as a design element in the CP allows not only for enhanced relaxometric properties (maximum r1 =16.4 mm(-1) s(-1) at 10 MHz), but also for a pH responsiveness (Δr1 =108 % between pH 4 and 6.5), beyond the values obtained for the low molecular weight Gd-DOTA-4AmP itself. The CP can be miniaturised to the nanoscale to form colloids that are stable in physiological saline solution and in cell culture media and does not show cytotoxicity.

12.
Adv Mater ; 36(12): e2210613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36930851

RESUMO

Controlled synthesis of phase-pure metal-organic frameworks (MOFs) is essential for their application in technological areas such as catalysis or gas sorption. Yet, knowledge of their phase formation and growth remain rather limited, particularly with respect to species such as water whose vital role in MOF synthesis is often neglected. As a consequence, synthetic protocols often lack reproducibility when multiple MOFs can form from the same metal source and linker, and phase mixtures are obtained with little or no control over their composition. In this work, the role of water in the formation of the Zr-porphyrin MOF disordered PCN-224 (dPCN-224) is investigated. Through X-ray total scattering and scanning electron microscopy, it is observed that dPCN-224 forms via a metal-organic intermediate that consists of Zr6O4(OH)4 clusters linked by tetrakis(4-carboxy-phenyl)porphyrin molecules. Importantly, water is not only essential to the formation of Zr6O4(OH)4 clusters, but it also plays a primary role in dictating the formation kinetics of dPCN-224. This multidisciplinary approach to studying the speciation of dPCN-224 provides a blueprint for how Zr-MOF synthesis protocols can be assessed and their reproducibility increased, and highlights the importance of understanding the role of water as a decisive component in Zr-MOF formation.

13.
Chem Commun (Camb) ; 59(21): 3071-3074, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36753325

RESUMO

A Zr6-based metal-organic framework (MOF), MOF-808, is investigated for the adsorptive removal of IO3- from aqueous solutions, due to its high surface area and abundance of open metal sites. The uptake kinetics, adsorption capacity and binding mode are studied, showing a maximum uptake capacity of 233 mg g-1, the highest reported by any material.

14.
ACS Energy Lett ; 7(4): 1403-1411, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35434367

RESUMO

Sodium thiophosphates are promising materials for large-scale energy storage applications benefiting from high ionic conductivities and the geopolitical abundance of the elements. A representative of this class is Na4P2S6, which currently shows two known polymorphs-α and ß. This work describes a third polymorph of Na4P2S6, γ, that forms above 580 °C, exhibits fast-ion conduction with low activation energy, and is mechanically soft. Based on high-temperature diffraction, pair distribution function analysis, thermal analysis, impedance spectroscopy, and ab initio molecular dynamics calculations, the γ-Na4P2S6 phase is identified to be a plastic crystal characterized by dynamic orientational disorder of the P2S6 4- anions translationally fixed on a body-centered cubic lattice. The prospect of stabilizing plastic crystals at operating temperatures of solid-state batteries, with benefits from their high ionic conductivities and mechanical properties, could have a strong impact in the field of solid-state battery research.

15.
Adv Mater ; 34(7): e2107061, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34870342

RESUMO

Carbon nitrides are among the most studied materials for photocatalysis; however, limitations arise from inefficient charge separation and transport within the material. Here, this aspect is addressed in the 2D carbon nitride poly(heptazine imide) (PHI) by investigating the influence of various counterions, such as M = Li+ , Na+ , K+ , Cs+ , Ba2+ , NH4 + , and tetramethyl ammonium, on the material's conductivity and photocatalytic activity. These ions in the PHI pores affect the stacking of the 2D layers, which further influences the predominantly ionic conductivity in M-PHI. Na-containing PHI outperforms the other M-PHIs in various relative humidity (RH) environments (0-42%RH) in terms of conductivity, likely due to pore-channel geometry and size of the (hydrated) ion. With increasing RH, the ionic conductivity increases by 4-5 orders of magnitude (for Na-PHI up to 10-5 S cm-1 at 42%RH). At the same time, the highest photocatalytic hydrogen evolution rate is observed for Na-PHI, which is mirrored by increased photogenerated charge-carrier lifetimes, pointing to efficient charge-carrier stabilization by, e.g., mobile ions. These results indicate that also ionic conductivity is an important parameter that can influence the photocatalytic activity. Besides, RH-dependent ionic conductivity is of high interest for separators, membranes, or sensors.

16.
Chem Sci ; 13(28): 8253-8264, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919721

RESUMO

The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In this work, we detail the synthesis of a diamine-based light-driven molecular motor and its incorporation into a series of imine-based polymers and covalent organic frameworks (COF). We study structural and dynamic properties of the molecular building blocks and derived self-assembled solids with a series of spectroscopic, diffraction, and theoretical methods. Using an acid-catalyzed synthesis approach, we are able to obtain the first crystalline 2D COF with stacked hexagonal layers that contains 20 mol% molecular motors. The COF features a specific pore volume and surface area of up to 0.45 cm3 g-1 and 604 m2 g-1, respectively. Given the molecular structure and bulkiness of the diamine motor, we study the supramolecular assembly of the COF layers and detail stacking disorders between adjacent layers. We finally probe the motor dynamics with in situ spectroscopic techniques revealing current limitations in the analysis of these new materials and derive important analysis and design criteria as well as synthetic access to new generations of motorized porous framework materials.

17.
Commun Chem ; 4(1): 2, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36697507

RESUMO

Gas capture and sequestration are valuable properties of metal-organic frameworks (MOFs) driving tremendous interest in their use as filtration materials for chemical warfare agents. Recently, the Zr-based MOF UiO-67 was shown to effectively adsorb and decompose the nerve-agent simulant, dimethyl methylphosphonate (DMMP). Understanding mechanisms of MOF-agent interaction is challenging due to the need to distinguish between the roles of the MOF framework and its particular sites for the activation and sequestration process. Here, we demonstrate the quantitative tracking of both framework and binding component structures using in situ X-ray total scattering measurements of UiO-67 under DMMP exposure, pair distribution function analysis, and theoretical calculations. The sorption and desorption of DMMP within the pores, association with linker-deficient Zr6 cores, and decomposition to irreversibly bound methyl methylphosphonate were directly observed and analyzed with atomic resolution.

18.
Nat Commun ; 12(1): 3099, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035286

RESUMO

Porphyrin-based metal-organic frameworks (MOFs), exemplified by MOF-525, PCN-221, and PCN-224, are promising systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, based on a comprehensive synthetic and structural analysis spanning local and long-range length scales, we show that PCN-221 consists of Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, and linker vacancies at levels of around 50%, which may form in a locally correlated manner. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster-linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties.

19.
Acta Crystallogr A Found Adv ; 76(Pt 3): 395-409, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356790

RESUMO

A new approach is presented to obtain candidate structures from atomic pair distribution function (PDF) data in a highly automated way. It fetches, from web-based structural databases, all the structures meeting the experimenter's search criteria and performs structure refinements on them without human intervention. It supports both X-ray and neutron PDFs. Tests on various material systems show the effectiveness and robustness of the algorithm in finding the correct atomic crystal structure. It works on crystalline and nanocrystalline materials including complex oxide nanoparticles and nanowires, low-symmetry and locally distorted structures, and complicated doped and magnetic materials. This approach could greatly reduce the traditional structure searching work and enable the possibility of high-throughput real-time auto-analysis PDF experiments in the future.

20.
Chem Sci ; 11(47): 12647-12654, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34094458

RESUMO

Interactions between extended π-systems are often invoked as the main driving force for stacking and crystallization of 2D organic polymers. In covalent organic frameworks (COFs), the stacking strongly influences properties such as the accessibility of functional sites, pore geometry, and surface states, but the exact nature of the interlayer interactions is mostly elusive. The stacking mode is often identified as eclipsed based on observed high symmetry diffraction patterns. However, as pointed out by various studies, the energetics of eclipsed stacking are not favorable and offset stacking is preferred. This work presents lower and higher apparent symmetry modifications of the imine-linked TTI-COF prepared through high- and low-temperature reactions. Through local structure investigation by pair distribution function analysis and simulations of stacking disorder, we observe random local layer offsets in the low temperature modification. We show that while stacking disorder can be easily overlooked due to the apparent crystallographic symmetry of these materials, total scattering methods can help clarify this information and suggest that defective local structures could be much more prevalent in COFs than previously thought. A detailed analysis of the local structure helps to improve the search for and design of highly porous tailor-made materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA