Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(5): 1233-1246, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36385211

RESUMO

The development of new treatment agents in recent decades has significantly improved the survival of patients with multiple myeloma (MM). Nonetheless, MM remains an incurable disease; therefore, novel combination therapies are required. Natural killer (NK) cells are one of the safest immunotherapeutic options. In this study, we found that the anti-myeloma activity of expanded NK cells (eNKs) was improved by daratumumab, lenalidomide, and dexamethasone (DRd) in an MM xenograft mouse model. NK cells expanded from peripheral blood mononuclear cells collected from MM patients were highly cytotoxic against DRd pretreated tumor cells in vitro. To mimic the clinical protocol, a human MM xenograft model was developed using human RPMI8226-RFP-FLuc cells in NOD/SCID IL-2Rγnull (NSG) mice. MM bearing mice were randomly divided into six groups: no treatment, eNK, Rd, Rd + eNKs, DRd, and DRd + eNKs. DRd significantly enhanced the cytotoxicity of eNKs by upregulating NK cell activation ligands and effector function. DRd in combination with eNKs significantly reduced the serum M-protein level and prolonged mouse survival. In addition, DRd significantly increased the persistence of eNK and homing to MM sites. These results show that the anti-myeloma activity of ex vivo-expanded and activated NK cells is augmented by the immunomodulatory effect of DRd in MM-bearing mice, suggesting the therapeutic potential of this combination for MM patients.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/terapia , Lenalidomida/farmacologia , Xenoenxertos , Leucócitos Mononucleares , Camundongos SCID , Camundongos Endogâmicos NOD , Células Matadoras Naturais , Dexametasona/farmacologia
2.
Cancer Immunol Immunother ; 71(3): 613-625, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34282497

RESUMO

BACKGROUND: Natural killer (NK) cell-based immunotherapy is a promising treatment approach for multiple myeloma (MM), but obtaining a sufficient number of activated NK cells remains challenging. Here, we report an improved method to generate ex vivo expanded NK (eNK) cells from MM patients based on genetic engineering of K562 cells to express OX40 ligand and membrane-bound (mb) IL-18 and IL-21. METHODS: K562-OX40L-mbIL-18/-21 cells were generated by transducing K562-OX40L cells with a lentiviral vector encoding mbIL-18 and mbIL-21, and these were used as feeder cells to expand NK cells from peripheral blood mononuclear cells of healthy donors (HDs) and MM patients in the presence of IL-2/IL-15. Purity, expansion rate, receptor expression, and functions of eNK cells were determined over four weeks of culture. RESULTS: NK cell expansion was enhanced by short exposure of soluble IL-18 and IL-21 with K562-OX40L cells. Co-culture of NK cells with K562-OX40L-mbIL-18/-21 cells resulted in remarkable expansion of NK cells from HDs (9,860-fold) and MM patients (4,929-fold) over the 28-day culture period. Moreover, eNK cells showed increased expression of major activation markers and enhanced cytotoxicity towards target K562, U266, and RPMI8226 cells. CONCLUSIONS: Our data suggest that genetically engineered K562 cells expressing OX40L, mbIL-18, and mbIL-21 improve the expansion of NK cells, increase activation signals, and enhance their cytolytic activity towards MM cells.


Assuntos
Citotoxicidade Imunológica , Interleucina-18/metabolismo , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Mieloma Múltiplo/imunologia , Ligante OX40/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Expressão Gênica , Humanos , Imunofenotipagem , Interleucina-18/genética , Interleucinas/genética , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ligante OX40/genética , Transdução Genética , Transgenes
3.
Cell Stem Cell ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986609

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-ß) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-ß receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-ß receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-ß inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-ß activity. Our findings demonstrate that TGF-ß signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-ß.

4.
Cell Mol Immunol ; 18(7): 1652-1661, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33980993

RESUMO

The use of natural killer (NK) cells is a promising and safe immunotherapeutic approach in the field of cancer immunotherapy. However, combination treatments are required to enhance the effector functions and therapeutic efficacy of NK cells. In this study, we investigated the potential of daratumumab (Dara), bortezomib, and dexamethasone (Dvd) to augment the antitumor effects of NK cells in a multiple myeloma (MM) xenograft mouse model. NK cells were expanded and activated using the K562-OX40 ligand and membrane-bound IL-18 and IL-21 in the presence of IL-2 and IL-15 from peripheral blood mononuclear cells from MM patients. A human MM xenograft model was established using human RPMI8226-RFP-FLuc cells in NOD/SCID IL-2Rγnull (NSG) mice. Tumor-bearing mice were divided into six treatment groups: no treatment, expanded NK cells (eNKs), Dara, Dara + eNKs, Dvd, and Dvd + eNKs. Dvd treatment strongly enhanced the cytotoxicity of eNKs by upregulating expression of NK cell activation ligands, downregulating expression of NK cell inhibitory ligands, and promoting antibody-dependent cellular cytotoxicity. The combination of eNKs with Dvd significantly prolonged mouse survival and reduced the tumor burden and serum M-protein level. Furthermore, Dvd pretreatment significantly increased eNK persistence and homing to MM sites. Our findings suggest that Dvd treatment potentiates the antimyeloma effects of NK cells expanded and activated ex vivo by modulating immune responses in MM-bearing mice.


Assuntos
Células Matadoras Naturais , Leucócitos Mononucleares , Animais , Anticorpos Monoclonais , Bortezomib/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
5.
Artigo em Inglês | WPRIM | ID: wpr-919157

RESUMO

In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor’s escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA