Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 48(11): 3874-7, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15916439

RESUMO

The effect of ligand structure on the magnetic resonance (MR) imaging and biodistribution of six gadolinium (Gd) chelates based on a hydroxypyridonate-terephthalimide (HOPO-TAM) ligand design was investigated. Modifications to the molecular structure of the Gd-HOPO-TAM chelates (hydrophilicity and aromatic group substitution) significantly influence the efficacy of imaging and biodistribution. MR imaging was performed on female mice after intravenous (iv) injection of 100 micromol of Gd/kg of body weight of the different complexes. The biodistribution results indicate that the liver uptake of the complexes is enhanced by a short poly(ethyleneoxy) (PEO) chain, while blood pool localization is facilitated by a very long PEO chain. There is a direct correlation between the blood pool localization of the complexes and the signal intensity of blood vessels in the MRI. The imaging results are consistent with in vitro NMR measurements that indicate long PEO chains increase image enhancement capabilities in the presence of serum albumin.


Assuntos
Meios de Contraste/química , Gadolínio , Compostos Organometálicos/química , Animais , Quelantes/química , Meios de Contraste/farmacocinética , Feminino , Imidas/química , Injeções Intravenosas , Fígado/anatomia & histologia , Fígado/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Compostos Organometálicos/sangue , Compostos Organometálicos/farmacocinética , Ácidos Ftálicos/química , Baço/anatomia & histologia , Baço/metabolismo , Relação Estrutura-Atividade , Distribuição Tecidual
2.
J Am Chem Soc ; 125(47): 14274-5, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14624565

RESUMO

The stability and water exchange dynamics of gadolinium (GdIII) complexes are critical characteristics that determine their effectiveness as contrast agents for magnetic resonance imaging (MRI). A new heteropodal GdIII chelate, [Gd-TREN-bis(6-Me-HOPO)-(TAM-TRI)(H2O)2] (Gd-2), is presented which is based on a hydroxypyridinate (HOPO)-terephthalamide (TAM) ligand design. Thermodynamic equilibrium constants for the acid-base properties and the GdIII complexation strength of TREN-bis(6-Me-HOPO)-(TAM-TRI) (2) were measured by potentiometric and spectrophotometric titration techniques, respectively. The pGd of 2 is 20.6 (pH 7.4, 25 degrees C, I = 0.1 M), indicating that Gd-2 is of more than sufficient thermodynamic stability for in vivo MRI applications. The water exchange rate of Gd-2 (kex = 5.3(+/-0.6) x 107 s-1) was determined by variable temperature 17O NMR and is in the fast exchange regime - ideal for MRI. Variable pressure 17O NMR was used to determine the volume of activation (DeltaV) of Gd-2. DeltaV for Gd-2 is -5 cm3 mol-1, indicative of an interchange associative (Ia) water exchange mechanism. The results reported herein are important as they provide insight into the factors influencing high stability and fast water exchange in the HOPO series of complexes, potentially future clinical contrast agents.


Assuntos
Meios de Contraste/química , Gadolínio/química , Compostos Organometálicos/química , Meios de Contraste/síntese química , Cinética , Ligantes , Compostos Organometálicos/síntese química , Água/química
3.
Inorg Chem ; 42(16): 4828-41, 2003 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-12895104

RESUMO

Factors that influence aggregation of lanthanide(III) (Ln(III)) ions to form polynuclear complexes were studied utilizing 1-aziridineethanol as a versatile source of macrocyclic and acyclic chelates. The facile ring-opening cyclo-oligomerization of 1-aziridineethanol leads to the formation of a series of polyaza cyclic oligomers (series A). In the presence of ethylenediamine, a competing N-alkylation reaction occurs to produce a new class of acyclic ligands (series B). The cyclo-oligomerization of four 1-aziridineethanol units is the most favorable process, leading to the formation of the 12-membered cyclen-type macrocycle, H(4)L(1) (1,4,7,10-tetrakis(2-hydroxyethyl)-1,4,7,10-tetraaza-cyclododecane). Ring-opening cyclo-oligomerization of 1-aziridineethanol in the presence of Ln(III) ions produces self-assembled mononuclear, tetranuclear, and pentanuclear compounds of H(4)L(1). In the presence of ethylenediamine, oligomerization of 1-aziridineethanol results in a dinuclear complex of an acyclic poly(amino-alkoxide) H(2)L(2). The coordinative unsaturation of (i) the alkoxy sites of [H(x)L(1)](x)(-)(4) (where x < 4) and (ii) Ln(III) ions in coordination numbers less than nine are critical factors in the formation of the polynuclear Ln(III) complexes. The identities of mononuclear, dinuclear, tetranuclear, and pentanuclear complexes herein discussed were established by X-ray crystallography.

4.
Inorg Chem ; 43(26): 8577-86, 2004 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-15606209

RESUMO

The synthesis and relaxometric properties of hetero-tripodal hydroxypyridonate-terephthalamide gadolinium (Gd(3+)) chelates with differing structural features for probing human serum albumin (HSA) interactions are reported. The Gd(3+) complexes are divided into two series. The first series (3-5) features a benzyl derivative connected to the hydroxypyridonate (HOPO) moiety. The second series of complexes (6-10) has the common feature of a poly(ethylene glycol) (PEG) attached to the terephthalamide (TAM) moiety and is nonbenzylated. The water exchange of the complexes is in the fast exchange regime with rates (k(ex)) in the range 0.45-1.11 x 10(8) s(-1). The complexes have a moderate interaction with HSA with association constants (K(A)'s) in the range 0.7-8.6 x 10(3) M(-1). Protein binding results in an enhancement in proton relaxivity from 7.7-10.4 mM(-1) s(-1) (r(1p)) to 15-29 mM(-1) s(-1) (r(1p)(b)). It is concluded that the interaction of the complexes with HSA (i) is enhanced by the presence of benzyl groups, (ii) is entropically driven, and (iii) results in a lower hydration number (q).


Assuntos
Gadolínio/química , Compostos Organometálicos/síntese química , Albumina Sérica/química , Meios de Contraste , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Termodinâmica , Água/química
5.
Inorg Chem ; 42(8): 2577-83, 2003 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-12691564

RESUMO

The variation of the size of the capping scaffold which connects the hydroxypyridonate (HOPO) binding units in a series of tripodal chelators for gadolinium (Gd) complexes has been investigated. A new analogue of TREN-1-Me-3,2-HOPO (1) (TREN = tri(ethylamine)amine) was synthesized: TREN-Gly-1-Me-3,2-HOPO (2) features a glycine spacer between the TREN cap and HOPO binding unit. TRPN-1-Me-3,2-HOPO (3) has a propylene-bridged cap, as compared to the ethylene bridges within the TREN cap of the parent complex. Thermodynamic equilibrium constants for the acid-base properties of 2 and the Gd(3+) complexation strength of 2 and 3 were measured and are compared with that of the parent ligand. The most basic ligand is 2 while 3 is the most acidic. Both 2 and 3 form Gd(3+) complexes of similar stability (pGd = 16.7 and 15.6, respectively) and are less stable than the parent complex Gd-1 (pGd = 19.2). Two of the three complexes are more stable than the bis(methylamide)diethylenetriamine pentaacetate complex Gd(DTPA-BMA) (pGd = 15.7) while the other is of comparable stability. Enlargement of the ligand scaffold decreases the stability of the Gd(3+) complexes and indicates that the TREN scaffold is superior to the TRPN and TREN-Gly scaffolds. The proton relaxivity of Gd-2 is 6.6 mM(-)(1) s(-)(1) (20 MHz, 25 degrees C, pH 7.3), somewhat lower than the parent Gd-1 but higher than that of the MRI contrast agents in clinical practice. The pH-independent relaxivity of Gd-2 is uncharacteristic of this family of complexes and is discussed.


Assuntos
Gadolínio/química , Compostos Organometálicos/química , Piridonas/química , Meios de Contraste , Concentração de Íons de Hidrogênio , Ligantes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA