Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674997

RESUMO

Wheat is an important staple crop since its proteins contribute to human and animal nutrition and are important for its end-use quality. However, wheat proteins can also cause adverse human reactions for a large number of people. We performed a genome wide association study (GWAS) on 114 proteins quantified by LC-MS-based proteomics and expressed in an environmentally stable manner in 148 wheat cultivars with a heritability > 0.6. For 54 proteins, we detected quantitative trait loci (QTL) that exceeded the Bonferroni-corrected significance threshold and explained 17.3−84.5% of the genotypic variance. Proteins in the same family often clustered at a very close chromosomal position or the potential homeolog. Major QTLs were found for four well-known glutenin and gliadin subunits, and the QTL segregation pattern in the protein encoding the high molecular weight glutenin subunit Dx5 could be confirmed by SDS gel-electrophoresis. For nine potential allergenic proteins, large QTLs could be identified, and their measured allele frequencies open the possibility to select for low protein abundance by markers as long as their relevance for human health has been conclusively demonstrated. A potential allergen was introduced in the beginning of 1980s that may be linked to the cluster of resistance genes introgressed on chromosome 2AS from Triticum ventricosum. The reported sequence information for the 54 major QTLs can be used to design efficient markers for future wheat breeding.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Humanos , Mapeamento Cromossômico , Triticum/genética , Alérgenos/genética , Multiômica , Melhoramento Vegetal , Fenótipo
2.
Theor Appl Genet ; 135(4): 1131-1141, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112144

RESUMO

KEY MESSAGE: Heterosis effects for dough quality and baking volume were close to zero. However, hybrids have a higher grain yield at a given level of bread making quality compared to their parental lines. Bread wheat cultivars have been selected according to numerous quality traits to fulfill the requirements of the bread making industry. These include beside protein content and quality also rheological traits and baking volume. We evaluated 35 male and 73 female lines and 119 of their single-cross hybrids at three different locations for grain yield, protein content, sedimentation value, extensograph traits and baking volume. No significant differences (p < 0.05) were found in the mean comparisons of males, females and hybrids, except for higher grain yield and lower protein content in the hybrids. Mid-parent and better-parent heterosis values were close to zero and slightly negative, respectively, for baking volume and extensograph traits. However, the majority of heterosis values resulted in the finding that hybrids had higher grain yield than lines for a given level of baking volume, sedimentation value or energy value of extensograph. Due to the high correlation with the mid-parent values (r > 0.70), an initial prediction of hybrid performance based on line per se performance for protein content, sedimentation value, most traits of the extensograph and baking volume is possible. The low variance due to specific combining ability effects for most quality traits points toward an additive gene action requires quality selection within both heterotic groups. Consequently, hybrid wheat can combine high grain yield with high bread making quality. However, the future use of wheat hybrids strongly depends on the establishment of a cost-efficient and reliable seed production system.


Assuntos
Vigor Híbrido , Triticum , Pão , Grão Comestível/genética , Genótipo , Fenótipo , Triticum/genética , Triticum/metabolismo
3.
Theor Appl Genet ; 134(5): 1409-1422, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630103

RESUMO

KEY MESSAGE: Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ([Formula: see text]) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm-993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 - 0.61) than GBLUP (0.14 - 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and [Formula: see text]. However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.


Assuntos
Biomassa , Genômica/métodos , Imageamento Hiperespectral/métodos , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Secale/fisiologia , Seleção Genética , Interação Gene-Ambiente , Genética Populacional , Genoma de Planta , Fenótipo , Secale/genética
4.
Plant Biotechnol J ; 18(6): 1396-1408, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31782598

RESUMO

Resistance breeding is crucial for a sustainable control of leaf rust (Puccinia triticina) in wheat (Triticum aestivum L.) while directly targeting functional variants is the Holy Grail for efficient marker-assisted selection and map-based cloning. We assessed the limits and prospects of exome association analysis for severity of leaf rust in a large hybrid wheat population of 1574 single-crosses plus their 133 parents. After imputation and quality control, exome sequencing revealed 202 875 single-nucleotide polymorphisms (SNPs) covering 19.7% of the high-confidence annotated gene space. We performed intensive data mining and found significant associations for 2171 SNPs corresponding to 50 different loci. Some of these associations mapped in the proximity of the already known resistance genes Lr21, Lr34-B, Lr1 and Lr10, while other associated genomic regions, such as those on chromosomes 1A and 3D, harboured several annotated genes putatively involved in resistance. Validation with an independent population helped to narrow down the list of putative resistance genes that should be targeted by fine-mapping. We expect that the proposed strategy of intensive data mining coupled with validation will significantly influence research in plant genetics and breeding.


Assuntos
Basidiomycota , Triticum , Cruzamento , Resistência à Doença/genética , Exoma/genética , Genes de Plantas/genética , Humanos , Doenças das Plantas/genética , Triticum/genética
5.
Theor Appl Genet ; 133(11): 3001-3015, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32681289

RESUMO

KEY MESSAGE: Hyperspectral and genomic data are effective predictors of biomass yield in winter rye. Variable selection procedures can improve the informativeness of reflectance data. Integrating cutting-edge technologies is imperative to sustainably breed crops for a growing global population. To predict dry matter yield (DMY) in winter rye (Secale cereale L.), we tested single-kernel models based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices, a multi-kernel model combining both matrices and a bivariate model fitted with plant height as a secondary trait. In total, 274 elite rye lines were genotyped using a 10 k-SNP array and phenotyped as testcrosses for DMY and plant height at four locations in Germany in two years (eight environments). Spectral data consisted of 400 discrete narrow bands ranging between 410 and 993 nm collected by an unmanned aerial vehicle (UAV) on two dates on each environment. To reduce data dimensionality, variable selection of bands was performed, resulting in the least absolute shrinkage and selection operator (Lasso) as the best method in terms of predictive abilities. The mean heritability of reflectance data was moderate ([Formula: see text] = 0.72) and highly variable across the spectrum. Correlations between DMY and single bands were generally significant (p < 0.05) but low (≤ 0.29). Across environments and training set (TRN) sizes, the bivariate model showed the highest prediction abilities (0.56-0.75), followed by the multi-kernel (0.45-0.71) and single-kernel (0.33-0.61) models. With reduced TRN, HBLUP performed better than GBLUP. The HBLUP model fitted with a set of selected bands was preferred. Within and across environments, prediction abilities increased with larger TRN. Our results suggest that in the era of digital breeding, the integration of high-throughput phenotyping and genomic selection is a promising strategy to achieve superior selection gains in hybrid rye.


Assuntos
Modelos Genéticos , Secale/crescimento & desenvolvimento , Secale/genética , Biomassa , Cruzamentos Genéticos , Genótipo , Alemanha , Fenótipo , Melhoramento Vegetal , Análise Espectral
6.
Theor Appl Genet ; 133(7): 2171-2181, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281003

RESUMO

KEY MESSAGE: Hybrid wheat breeding is a promising strategy to improve the level of leaf rust and stripe rust resistance in wheat. Leaf rust and stripe rust belong to the most important fungal diseases in wheat production. Due to a dynamic development of new virulent races, epidemics appear in high frequency and causes significant losses in grain yield and quality. Therefore, research is needed to develop strategies to breed wheat varieties carrying highly efficient resistances. Stacking of dominant resistance genes through hybrid breeding is such an approach. Within this study, we investigated the genetic architecture of leaf rust and stripe rust resistance of 1750 wheat hybrids and their 230 parental lines using a genome-wide association study. We observed on average a lower rust susceptibility for hybrids in comparison to their parental inbred lines and some hybrids outperformed their better parent with up to 56%. Marker-trait associations were identified on chromosome 3D and 4A for leaf rust and on chromosome 2A, 2B, and 6A for stripe rust resistance by using a genome-wide association study with a Bonferroni-corrected threshold of P < 0.10. Detected loci on chromosomes 4A and 2A were located within previously reported genomic regions affecting leaf rust and stripe rust resistance, respectively. The degree of dominance was for most associations favorable in the direction of improved resistance. Thus, resistance can be increased in hybrid wheat breeding by fixing complementary leaf rust and stripe rust resistance genes with desired dominance effects in opposite parental pools.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Estudos de Associação Genética , Genômica , Genótipo , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle
7.
Theor Appl Genet ; 132(4): 921-932, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30498895

RESUMO

KEY MESSAGE: Hybrid durum has a promising yield potential coupled with good quality, but the efficiency of hybrid seed production must be improved. Hybrid breeding is a tremendous success story in many crops, but has not yet made a breakthrough in wheat, mainly due to inefficient hybrid seed production. In this study, we investigated the heterosis for grain yield and important quality traits in durum wheat of 33 hybrids built up from 24 parental lines, as well as the variation in anther extrusion and its genetic architecture in a vast collection of Central European elite durum lines. Average mid-parent heterosis for grain yield was 5.8%, and the best hybrids had a more than one ton per hectare higher grain yield than the best line cultivars. Furthermore, hybrids had a higher grain yield than lines at a given level of protein content or sedimentation value, underpinning their potential for a sustainable agriculture. However, seed set in our experimental hybrid seed production was low. We therefore evaluated 315 elite durum lines for visual anther extrusion, which revealed a large genetic variance and a heritability of 0.66. Results from association mapping suggest a mainly quantitative inheritance of visual anther extrusion with few putative QTL being identified, the largest one explaining less than 20% of the genotypic variance. Genome-wide prediction taking the four largest putative QTL into account yielded a mean cross-validated prediction ability of 0.55. Consequently, breeding for improved male floral characteristics is feasible in durum wheat, but should be mainly based on phenotypic selection.


Assuntos
Flores/genética , Vigor Híbrido/genética , Hibridização Genética , Característica Quantitativa Herdável , Sementes/genética , Triticum/genética , Marcadores Genéticos , Genoma de Planta , Estudo de Associação Genômica Ampla , Genótipo , Análise de Componente Principal , Locos de Características Quantitativas/genética
8.
Theor Appl Genet ; 132(2): 489-500, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456718

RESUMO

KEY MESSAGE: Additive and dominance effect QTL for grain yield and protein content display antagonistic pleiotropic effects, making genomic selection based on the index grain protein deviation a promising method to alleviate the negative correlation between these traits in wheat breeding. Grain yield and quality-related traits such as protein content and sedimentation volume are key traits in wheat breeding. In this study, we used a large population of 1604 hybrids and their 135 parental components to investigate the genetics and metabolomics underlying the negative relationship of grain yield and quality, and evaluated approaches for their joint improvement. We identified a total of nine trait-associated metabolites and show that prediction using genomic data alone resulted in the highest prediction ability for all traits. We dissected the genetic architecture of grain yield and quality-determining traits and show results of the first mapping of the derived trait grain protein deviation. Further, we provide a genetic analysis of the antagonistic relation of grain yield and protein content and dissect the mode of gene action (pleiotropy vs linkage) of identified QTL. Lastly, we demonstrate that the composition of the training set for genomic prediction is crucial when considering different quality classes in wheat breeding.


Assuntos
Proteínas de Vegetais Comestíveis/análise , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/química , Grão Comestível/genética , Ligação Genética , Pleiotropia Genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/química , Sementes/genética , Triticum/química
9.
Theor Appl Genet ; 131(4): 973-984, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29340753

RESUMO

KEY MESSAGE: Spelt wheat is a distinct genetic group to elite bread wheat, but heterosis for yield and protein quality is too low for spelt to be recommended as heterotic group for hybrid breeding in wheat. The feasibility to switch from line to hybrid breeding is currently a hot topic in the wheat community. One limitation seems to be the lack of divergent heterotic groups within wheat adapted to a certain region. Spelt wheat is a hexaploid wheat that can easily be crossed with bread wheat and that forms a divergent genetic group when compared to elite bread wheat. The aim of this study was to investigate the potential of Central European spelt as a heterotic group for Central European bread wheat. We performed two large experimental field studies comprising in total 43 spelt lines, 14 wheat lines, and 273 wheat-spelt hybrids, and determined yield, heading time, plant height, resistance against yellow rust, leaf rust, and powdery mildew, as well as protein content and sedimentation volume. Heterosis of yield was found to be lower than that of hybrids made between elite wheat lines. Moreover, heterosis of the quality trait sedimentation volume was negative. Consequently, spelt wheat does not appear suited to be used as heterotic group in hybrid wheat breeding. Nevertheless, high combining abilities of a few spelt lines with elite bread wheat lines make them interesting resources for pre-breeding in bread wheat. Thereby, the low correlation between line per se performance and combining ability of these spelt lines shows the potential to unravel the breeding value of genetic resources by crossing them to an elite tester.


Assuntos
Vigor Híbrido , Hibridização Genética , Melhoramento Vegetal , Triticum/genética , Cruzamentos Genéticos , Genótipo , Fenótipo , Poliploidia
10.
Theor Appl Genet ; 130(8): 1669-1683, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28534096

RESUMO

KEY MESSAGE: Genomic prediction was evaluated in German winter barley breeding lines. In this material, prediction ability is strongly influenced by population structure and main determinant of prediction ability is the close genetic relatedness of the breeding material. To ensure breeding progress under changing environmental conditions the implementation and evaluation of new breeding methods is of crucial importance. Modern breeding approaches like genomic selection may significantly accelerate breeding progress. We assessed the potential of genomic prediction in a training population of 750 genotypes, consisting of multiple six-rowed winter barley (Hordeum vulgare L.) elite material families and old cultivars, which reflect the breeding history of barley in Germany. Crosses of parents selected from the training set were used to create a set of double-haploid families consisting of 750 genotypes. Those were used to confirm prediction ability estimates based on a cross-validation with the training set material using 11 different genomic prediction models. Population structure was inferred with dimensionality reduction methods like discriminant analysis of principle components and the influence of population structure on prediction ability was investigated. In addition to the size of the training set, marker density is of crucial importance for genomic prediction. We used genome-wide linkage disequilibrium and persistence of linkage phase as indicators to estimate that 11,203 evenly spaced markers are required to capture all QTL effects. Although a 9k SNP array does not contain a sufficient number of polymorphic markers for long-term genomic selection, we obtained fairly high prediction accuracies ranging from 0.31 to 0.71 for the traits earing, hectoliter weight, spikes per square meter, thousand kernel weight and yield and show that they result from the close genetic relatedness of the material. Our work contributes to designing long-term genetic prediction programs for barley breeding.


Assuntos
Genoma de Planta , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Melhoramento Vegetal , Cruzamentos Genéticos , Genômica , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo
11.
Front Plant Sci ; 12: 699589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880880

RESUMO

The development of crop varieties with stable performance in future environmental conditions represents a critical challenge in the context of climate change. Environmental data collected at the field level, such as soil and climatic information, can be relevant to improve predictive ability in genomic prediction models by describing more precisely genotype-by-environment interactions, which represent a key component of the phenotypic response for complex crop agronomic traits. Modern predictive modeling approaches can efficiently handle various data types and are able to capture complex nonlinear relationships in large datasets. In particular, machine learning techniques have gained substantial interest in recent years. Here we examined the predictive ability of machine learning-based models for two phenotypic traits in maize using data collected by the Maize Genomes to Fields (G2F) Initiative. The data we analyzed consisted of multi-environment trials (METs) dispersed across the United States and Canada from 2014 to 2017. An assortment of soil- and weather-related variables was derived and used in prediction models alongside genotypic data. Linear random effects models were compared to a linear regularized regression method (elastic net) and to two nonlinear gradient boosting methods based on decision tree algorithms (XGBoost, LightGBM). These models were evaluated under four prediction problems: (1) tested and new genotypes in a new year; (2) only unobserved genotypes in a new year; (3) tested and new genotypes in a new site; (4) only unobserved genotypes in a new site. Accuracy in forecasting grain yield performance of new genotypes in a new year was improved by up to 20% over the baseline model by including environmental predictors with gradient boosting methods. For plant height, an enhancement of predictive ability could neither be observed by using machine learning-based methods nor by using detailed environmental information. An investigation of key environmental factors using gradient boosting frameworks also revealed that temperature at flowering stage, frequency and amount of water received during the vegetative and grain filling stage, and soil organic matter content appeared as important predictors for grain yield in our panel of environments.

12.
Front Plant Sci ; 12: 703419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630453

RESUMO

Reciprocal recurrent genomic selection is a breeding strategy aimed at improving the hybrid performance of two base populations. It promises to significantly advance hybrid breeding in wheat. Against this backdrop, the main objective of this study was to empirically investigate the potential and limitations of reciprocal recurrent genomic selection. Genome-wide predictive equations were developed using genomic and phenotypic data from a comprehensive population of 1,604 single crosses between 120 female and 15 male wheat lines. Twenty superior female lines were selected for initiation of the reciprocal recurrent genomic selection program. Focusing on the female pool, one cycle was performed with genomic selection steps at the F2 (60 out of 629 plants) and the F5 stage (49 out of 382 plants). Selection gain for grain yield was evaluated at six locations. Analyses of the phenotypic data showed pronounced genotype-by-environment interactions with two environments that formed an outgroup compared to the environments used for the genome-wide prediction equations. Removing these two environments for further analysis resulted in a selection gain of 1.0 dt ha-1 compared to the hybrids of the original 20 parental lines. This underscores the potential of reciprocal recurrent genomic selection to promote hybrid wheat breeding, but also highlights the need to develop robust genome-wide predictive equations.

13.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117061

RESUMO

The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

14.
Front Plant Sci ; 11: 594113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193553

RESUMO

Improving leaf rust and stripe rust resistance is a central goal in wheat breeding. The objectives of this study were to (1) elucidate the genetic basis of leaf rust and stripe rust resistance in a hybrid wheat population, (2) compare the findings using a previously published hybrid wheat data set, and (3) contrast the prediction accuracy with those of genome-wide prediction. The hybrid wheat population included 1,744 single crosses from 236 parental lines. The genotypes were fingerprinted using a 15k SNP array and evaluated for leaf rust and stripe rust resistance in multi-location field trials. We observed a high congruency of putative quantitative trait loci (QTL) for leaf rust resistance between both populations. This was not the case for stripe rust resistance. Accordingly, prediction accuracy of the detected QTL was moderate for leaf rust but low for stripe rust resistance. Genome-wide selection increased the prediction accuracy slightly for stripe rust albeit at a low level but not for leaf rust. Thus, our findings suggest that marker-assisted selection seems to be a robust and efficient tool to improve leaf rust resistance in European wheat hybrids.

15.
Sci Adv ; 6(24): eaay4897, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32582844

RESUMO

The genetics underlying heterosis, the difference in performance of crosses compared with midparents, is hypothesized to vary with relatedness between parents. We established a unique germplasm comprising three hybrid wheat sets differing in the degree of divergence between parents and devised a genetic distance measure giving weight to heterotic loci. Heterosis increased steadily with heterotic genetic distance for all 1903 hybrids. Midparent heterosis, however, was significantly lower in the hybrids including crosses between elite and exotic lines than in crosses among elite lines. The analysis of the genetic architecture of heterosis revealed this to be caused by a higher portion of negative dominance and dominance-by-dominance epistatic effects. Collectively, these results expand our understanding of heterosis in crops, an important pillar toward global food security.

16.
G3 (Bethesda) ; 8(2): 707-718, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255118

RESUMO

Genetic resources are an important source of genetic variation for plant breeding. Genome-wide association studies (GWAS) and genomic prediction greatly facilitate the analysis and utilization of useful genetic diversity for improving complex phenotypic traits in crop plants. We explored the potential of GWAS and genomic prediction for improving curd-related traits in cauliflower (Brassica oleracea var. botrytis) by combining 174 randomly selected cauliflower gene bank accessions from two different gene banks. The collection was genotyped with genotyping-by-sequencing (GBS) and phenotyped for six curd-related traits at two locations and three growing seasons. A GWAS analysis based on 120,693 single-nucleotide polymorphisms identified a total of 24 significant associations for curd-related traits. The potential for genomic prediction was assessed with a genomic best linear unbiased prediction model and BayesB. Prediction abilities ranged from 0.10 to 0.66 for different traits and did not differ between prediction methods. Imputation of missing genotypes only slightly improved prediction ability. Our results demonstrate that GWAS and genomic prediction in combination with GBS and phenotyping of highly heritable traits can be used to identify useful quantitative trait loci and genotypes among genetically diverse gene bank material for subsequent utilization as genetic resources in cauliflower breeding.


Assuntos
Brassica/genética , Mapeamento Cromossômico/métodos , Genoma de Planta/genética , Locos de Características Quantitativas/genética , Algoritmos , Brassica/classificação , Brassica/crescimento & desenvolvimento , Variação Genética , Estudo de Associação Genômica Ampla , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA