Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(21): 217202, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29219408

RESUMO

The discovery of magnetic bistability in Mn_{12} more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty to determine interactions in complex polycentric molecules often prevents their understanding. Mn_{12} is an outstanding example of this difficulty: although it is the forefather and most studied of all molecular nanomagnets, an unambiguous determination of even the leading magnetic exchange interactions is still lacking. Here we exploit four-dimensional inelastic neutron scattering to portray how individual spins fluctuate around the magnetic ground state, thus fixing the exchange couplings of Mn_{12} for the first time. Our results demonstrate the power of four-dimensional inelastic neutron scattering as an unrivaled tool to characterize magnetic clusters.

2.
Phys Rev Lett ; 108(10): 107204, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463450

RESUMO

We show that the electron spin phase memory time, the most important property of a molecular nanomagnet from the perspective of quantum information processing, can be improved dramatically by chemically engineering the molecular structure to optimize the environment of the spin. We vary systematically each structural component of the class of antiferromagnetic Cr(7)Ni rings to identify the sources of decoherence. The optimal structure exhibits a phase memory time exceeding 15 µs.


Assuntos
Imãs/química , Nanopartículas/química , Teoria Quântica , Ácidos Carboxílicos/química , Compostos de Cromo/química , Complexos de Coordenação/química , Elétrons , Ligantes , Modelos Moleculares , Níquel/química
3.
Phys Rev Lett ; 106(22): 227205, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702630

RESUMO

We report an in-depth study on how spin information propagates at supramolecular scale through a family of heteroaromatic linkers. By density-functional theory calculations, we rationalize the behavior of a series of Cr7Ni dimers for which we are able to systematically change the aromatic linker thus tuning the strength of the magnetic interaction, as experimentally shown by low temperature micro-SQUID and specific heat measurements. We also predict a cos2 dependence of the magnetic coupling on the twisting angle between the aromatic cycles in bicyclic linkers, a mechanism parallel to charge transport on similar systems [L. Venkataraman et al., Nature (London) 442, 904 (2006)].

4.
J Phys Condens Matter ; 32(24): 244003, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32079012

RESUMO

An accurate experimental characterization of finite antiferromagnetic (AF) spin chains is crucial for controlling and manipulating their magnetic properties and quantum states for potential applications in spintronics or quantum computation. In particular, finite AF chains are expected to show a different magnetic behaviour depending on their length and topology. Molecular AF rings are able to combine the quantum-magnetic behaviour of AF chains with a very remarkable tunability of their topological and geometrical properties. In this work we measure the 53Cr-NMR spectra of the Cr8Cd ring to study the local spin densities on the Cr sites. Cr8Cd can in fact be considered a model system of a finite AF open chain with an even number of spins. The NMR resonant frequencies are in good agreement with the theoretical local spin densities, by assuming a core polarization field A C = -12.7 T µ B -1. Moreover, these NMR results confirm the theoretically predicted non-collinear spin arrangement along the Cr8Cd ring, which is typical of an even-open AF spin chain.

5.
Nat Commun ; 6: 7061, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952539

RESUMO

Finite spin chains made of few magnetic ions are the ultimate-size structures that can be engineered to perform spin manipulations for quantum information devices. Their spin structure is expected to show finite size effects and its knowledge is of great importance both for fundamental physics and applications. Until now a direct and quantitative measurement of the spatial distribution of the magnetization of such small structures has not been achieved even with the most advanced microscopic techniques. Here we present measurements of the spin density distribution of a finite chain of eight spin-3/2 ions using polarized neutron diffraction. The data reveal edge effects that are a consequence of the finite size and of the parity of the chain and indicate a noncollinear spin arrangement. This is in contrast with the uniform spin distribution observed in the parent closed chain and the collinear arrangement in odd-open chains.

6.
J Phys Condens Matter ; 23(24): 242201, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21628784

RESUMO

We have observed an electronic energy level crossing in a molecular nanomagnet (MNM) using muon spin relaxation. This effect, not observed previously despite several muon studies of MNM systems, provides further evidence that the spin relaxation of the implanted muon is sensitive to the dynamics of the electronic spin. Our measurements on a broken ring MNM [H(2)N(t)Bu(is)Pr][Cr(8)CdF(9)(O(2)CC(CH(3))(3))(18)], which contains eight Cr ions, show clear evidence for the S = 0 --> S = 1 transition that takes place at B(c) = 2.3 T. The crossing is observed as a resonance-like dip in the average positron asymmetry and also in the muon spin relaxation rate, which shows a sharp increase in magnitude at the transition and a peak centred within the S = 1 regime.


Assuntos
Magnetismo/instrumentação , Mésons , Modelos Químicos , Nanotecnologia/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
7.
Phys Rev Lett ; 97(26): 267204, 2006 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-17280461

RESUMO

The NMR spectra of 19F and 53Cr have been obtained at low temperatures in a heterometallic substituted antiferromagnetic (AF) ring Cr7Cd with an S=3/2 ground state and compared with the spectra in a homometallic Cr8 AF ring with an S=0 ground state. From the analysis of the spectra one can derive directly model independent values of the staggered nonuniform distribution of the local moment in the heterometallic ring Cr7Cd. The experimental values are found to be in excellent agreement with the theoretical values calculated on the basis of an effective spin Hamiltonian which includes crystal field effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA