Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 161, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412657

RESUMO

As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.


Assuntos
Biossíntese Peptídica , Peptídeos/química , Policetídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Produtos Biológicos/metabolismo , Redes e Vias Metabólicas , Peptídeos/metabolismo , Policetídeo Sintases/metabolismo
2.
Microbiol Resour Announc ; 9(21)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439662

RESUMO

Streptomyces albus CAS922 was isolated from sunflower seed hulls. Its fully sequenced genome harbors a multitude of genes for carbohydrate-active enzymes, which likely facilitate growth on lignocellulosic biomass. Furthermore, the presence of 27 predicted biosynthetic gene clusters indicates a significant potential for the production of bioactive secondary metabolites.

3.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241855

RESUMO

Nostoc sp. strain ATCC 53789 is a producer of cryptophycins, which are promising anticancer agents. Here, we report the completely sequenced 8.7-Mb genome of Nostoc sp. strain ATCC 53789. The sequence provides insights into the metabolic network of this cyanobacterial strain and illuminates its potential for the biosynthesis of secondary metabolites.

4.
Genome Announc ; 2(6)2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25414509

RESUMO

Corynebacterium ureicelerivorans is an opportunistic pathogen with a lipophilic lifestyle and an exceptionally high urease activity. The genome sequence of the type strain revealed that lipophilism is caused by the lack of a fatty acid synthase gene. The ureABCEFGD genes are similar to the urease gene region of Corynebacterium glucuronolyticum.

5.
Genome Announc ; 2(4)2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25146145

RESUMO

The complete chromosomal sequence of the type strain Corynebacterium atypicum DSM 44849 comprises 2,311,380 bp. A functional annotation revealed the presence of genes involved in the synthesis and export of mycolic acids and in trehalose corynomycolate biosynthesis, supporting the view that the cell envelope of C. atypicum contains mycolic acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA