Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(2): 027403, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867431

RESUMO

A pair of coupled dots with one electron in each dot can provide improvements in spin coherence, particularly at an electrical bias called the "sweet spot," but few measurements have been performed on self-assembled dots in this regime. Here, we directly measure the T_{2}^{*} coherence time of the singlet-triplet states in this system as a function of bias and magnetic field, obtaining a maximum T_{2}^{*} of 60 ns, more than an order of magnitude higher than an electron spin in a single quantum dot. Our results uncover two main dephasing mechanisms: electrical noise away from the sweet spot, and a magnetic field dependent interaction with nuclear spins due to a difference in g factors.

2.
Phys Rev Lett ; 126(10): 107401, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784153

RESUMO

Optical spin rotations and cycling transitions for measurement are normally incompatible in quantum dots, presenting a fundamental problem for quantum information applications. Here we show that for a hole spin this problem can be addressed using a trion with one hole in an excited orbital, where strong spin-orbit interaction tilts the spin. Then, a particular trion triplet forms a double Λ system, even in a Faraday magnetic field, which we use to demonstrate fast hole spin initialization and coherent population trapping. The lowest trion transitions still strongly preserve spin, thus combining fast optical spin control with cycling transitions for spin readout.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA