Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 28: 101363, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707353

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway that modulates cellular redox homeostasis via the regeneration of NADPH. G6PD-deficient cells have a reduced ability to induce the innate immune response, thus increasing host susceptibility to pathogen infections. An important part of the immune response is the activation of the inflammasome. G6PD-deficient peripheral blood mononuclear cells (PBMCs) from patients and human monocytic (THP-1) cells were used as models to investigate whether G6PD modulates inflammasome activation. A decreased expression of IL-1ß was observed in both G6PD-deficient PBMCs and PMA-primed G6PD-knockdown (G6PD-kd) THP-1 cells upon lipopolysaccharide (LPS)/adenosine triphosphate (ATP) or LPS/nigericin stimulation. The pro-IL-1ß expression of THP-1 cells was decreased by G6PD knockdown at the transcriptional and translational levels in an investigation of the expression of the inflammasome subunits. The phosphorylation of p38 MAPK and downstream c-Fos expression were decreased upon G6PD knockdown, accompanied by decreased AP-1 translocation into the nucleus. Impaired inflammasome activation in G6PD-kd THP-1 cells was mediated by a decrease in the production of reactive oxygen species (ROS) by NOX signaling, while treatment with hydrogen peroxide (H2O2) enhanced inflammasome activation in G6PD-kd THP-1 cells. G6PD knockdown decreased Staphylococcus aureus and Escherichia coli clearance in G6PD-kd THP-1 cells and G6PD-deficient PBMCs following inflammasome activation. These findings support the notion that enhanced pathogen susceptibility in G6PD deficiency is, in part, due to an altered redox signaling, which adversely affects inflammasome activation and the bactericidal response.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , NADPH Oxidases/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/microbiologia , Células HEK293 , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/efeitos adversos , Masculino , Células THP-1/efeitos dos fármacos , Células THP-1/imunologia , Células THP-1/microbiologia , Adulto Jovem
2.
Cell Death Dis ; 9(1): 10, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317613

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme involved in the pentose phosphate shunt for producing nicotinamide adenine dinucleotide phosphate (NADPH). Severe G6PD deficiency leads to embryonic lethality, but the underlying mechanism is unclear. In the current study, the effects of G6PD on epithelial-mesenchymal transition (EMT), especially during embryonic development, were investigated. The knockdown of G6PD induced morphological changes, accompanied by the suppression of epithelial markers, E-cadherin and ß-catenin, in A549 and MDCK cells. Such modulation of EMT was corroborated by the enhancement of migration ability in G6PD-knockdown A549 cells. Zebrafish embryos with g6pd knockdown exhibited downregulation of the E-cadherin/ß-catenin adhesion molecules and impaired embryonic development through reduction in epiboly rate and increase in cell shedding at the embryo surface. The dysregulation in zebrafish embryonic development caused by g6pd knockdown could be rescued through human G6PD or CDH1 (E-cadherin gene) cRNA coinjection. The Smad3/miR-200b axis was dysregulated upon G6PD knockdown, and the reconstitution of SMAD3 in G6PD-knockdown A549 cells restored the expression of E-cadherin/ß-catenin. The inhibition of NADPH oxidase (NOX) activation through the loss of p22phox signaling was involved in the dysregulation of the Smad3/miR-200b axis upon G6PD knockdown. The reconstitution of G6PD led to the recovery of the regulation of NOX/Smad3/miR-200b signaling and increased the expression of E-cadherin/ß-catenin in G6PD-knockdown cells. Thus, these results suggest that in the EMT process, G6PD plays an important regulatory role as an integral component of the NOX/Smad3/miR-200b axis.


Assuntos
Transição Epitelial-Mesenquimal , Glucosefosfato Desidrogenase/metabolismo , MicroRNAs/metabolismo , NADPH Oxidases/metabolismo , Proteína Smad3/metabolismo , Células A549 , Animais , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Cães , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Glucosefosfato Desidrogenase/antagonistas & inibidores , Glucosefosfato Desidrogenase/genética , Humanos , Células Madin Darby de Rim Canino , NADPH Oxidases/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA