Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324037

RESUMO

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Catálise , Cisteína
2.
Chembiochem ; 24(5): e202200637, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579407

RESUMO

In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-ß-l-Araf-(1→2)-ß-l-Araf-(1→2)-ß-l-Araf, l-Araf4 ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf4 motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf3 -linked structure. The latter is then cleaved by GH121 ß-l-arabinobiosidase (HypBA2), producing ß-l-Araf-(1→2)-l-Ara (ß-l-arabinobiose) and mono-ß-l-Araf linked to the HRGP backbone. In bifidobacteria, the ß-l-arabinobiose is then hydrolyzed by GH127 ß-l-Arafase (Bll1HypBA1), a mechanistically unique cysteine glycosidase. We recently identified the distantly related homologue from Xanthomonas euvesicatoria as GH146 ß-l-Arafase along with paralogues from Bifidobacterium longum, one of which, Bll4HypBA1 (BLLJ_0089), can degrade l-Araf1 -Hyp in a similar way to that of GH146. As the chemical synthesis of the extensin hydrophilic motif 1 a, which possesses three distinct linkages that connect four oligoAraf residues [Hyp(l-Arafn ) (n=4, 3, 1)], was achieved previously, we precisely monitored the step-wise enzymatic cleavage of 1 a in addition to that of potato lectin. The results unequivocally revealed that this enzyme specifically degrades the Hyp(l-Araf1 ) motif.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Bifidobacterium/metabolismo , Hidroxiprolina , Glicosídeo Hidrolases/metabolismo , Glicoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA