Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(15): 3307-3324.e30, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385249

RESUMO

The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.


Assuntos
Mitocôndrias , Proteoma , Proteoma/metabolismo , Mitocôndrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometria de Massas/métodos , Regulação da Expressão Gênica
2.
Cell ; 185(12): 2035-2056.e33, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688132

RESUMO

Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Doença de Parkinson/metabolismo , Corpos de Processamento , Estabilidade de RNA , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
3.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955847

RESUMO

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Assuntos
Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteômica/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Nervo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Receptores de Lipoproteínas/metabolismo , Olfato/fisiologia
4.
Cell ; 166(5): 1295-1307.e21, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565350

RESUMO

Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios GABAérgicos/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Membranas Sinápticas/metabolismo , Animais , Antígenos CD/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteômica , Ratos , Receptores de GABA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tálamo/metabolismo
5.
Nat Methods ; 20(6): 908-917, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188954

RESUMO

The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.


Assuntos
Mitocôndrias , Proteômica , Retículo Endoplasmático , Biotina
6.
Genes Dev ; 32(13-14): 929-943, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950492

RESUMO

While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of-function animals, including autoimmunity. Along with a loss of tolerance for many nervous system autoantigens, we found increased lysosomal exocytosis in Smcr8 mutant macrophages. In addition to elevated surface Lamp1 (lysosome-associated membrane protein 1) expression, we also observed enhanced secretion of lysosomal components-phenotypes that we subsequently observed in C9orf72 loss-of-function macrophages. Overall, our findings demonstrate that C9ORF72 and SMCR8 have interdependent functions in suppressing autoimmunity as well as negatively regulating lysosomal exocytosis-processes of potential importance to ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Autoimunidade/genética , Proteínas de Transporte/metabolismo , Exocitose/genética , Lisossomos/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica/genética , Humanos , Linfonodos/patologia , Proteína 1 de Membrana Associada ao Lisossomo/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mutação , Isoformas de Proteínas , Estabilidade Proteica , Esplenomegalia/genética
7.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36735910

RESUMO

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Assuntos
Proteômica , Espermidina , Humanos , Espermidina/metabolismo , Fatores de Iniciação de Peptídeos/genética , Diferenciação Celular , Fator de Iniciação de Tradução Eucariótico 5A
8.
EMBO Rep ; 24(12): e56997, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37975164

RESUMO

Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.


Assuntos
Proteínas de Drosophila , Proteínas de Membrana , Animais , Polaridade Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
Mol Cell Proteomics ; 22(12): 100665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839701

RESUMO

Multiplexed and label-free mass spectrometry-based approaches with single-cell resolution have attributed surprising heterogeneity to presumed homogenous cell populations. Even though specialized experimental designs and instrumentation have demonstrated remarkable advances, the efficient sample preparation of single cells still lags. Here, we introduce the proteoCHIP, a universal option for single-cell proteomics sample preparation including multiplexed labeling up to 16-plex with high sensitivity and throughput. The automated processing using a commercial system combining single-cell isolation and picoliter dispensing, the cellenONE, reduces final sample volumes to low nanoliters submerged in a hexadecane layer simultaneously eliminating error-prone manual sample handling and overcoming evaporation. The specialized proteoCHIP design allows direct injection of single cells via a standard autosampler resulting in around 1500 protein groups per TMT10-plex with reduced or eliminated need for a carrier proteome. We evaluated the effect of wider precursor isolation windows at single-cell input levels and found that using 2 Da isolation windows increased overall sensitivity without significantly impacting interference. Using the dedicated mass spectrometry acquisition strategies detailed here, we identified on average close to 2000 proteins per TMT10-plex across 170 multiplexed single cells that readily distinguished human cell types. Overall, our workflow combines highly efficient sample preparation, chromatographic and ion mobility-based filtering, rapid wide-window data-dependent acquisition analysis, and intelligent data analysis for optimal multiplexed single-cell proteomics. This versatile and automated proteoCHIP-based sample preparation approach is sufficiently sensitive to drive biological applications of single-cell proteomics and can be readily adopted by proteomics laboratories.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Fluxo de Trabalho , Espectrometria de Massas/métodos , Proteoma/metabolismo
10.
Mol Cell Proteomics ; 22(6): 100563, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142057

RESUMO

Comprehensive and in-depth identification of the human leukocyte antigen class I (HLA-I) and class II (HLA-II) tumor immunopeptidome can inform the development of cancer immunotherapies. Mass spectrometry (MS) is a powerful technology for direct identification of HLA peptides from patient-derived tumor samples or cell lines. However, achieving sufficient coverage to detect rare and clinically relevant antigens requires highly sensitive MS-based acquisition methods and large amounts of sample. While immunopeptidome depth can be increased by off-line fractionation prior to MS, its use is impractical when analyzing limited amounts of primary tissue biopsies. To address this challenge, we developed and applied a high-throughput, sensitive, and single-shot MS-based immunopeptidomics workflow that leverages trapped ion mobility time-of-flight MS on the Bruker timsTOF single-cell proteomics system (SCP). We demonstrate greater than twofold improved coverage of HLA immunopeptidomes relative to prior methods with up to 15,000 distinct HLA-I and HLA-II peptides from 4e7 cells. Our optimized single-shot MS acquisition method on the timsTOF SCP maintains high coverage, eliminates the need for off-line fractionation, and reduces input requirements to as few as 1e6 A375 cells for >800 distinct HLA-I peptides. This depth is sufficient to identify HLA-I peptides derived from cancer-testis antigen and noncanonical proteins. We also apply our optimized single-shot SCP acquisition methods to tumor-derived samples, enabling sensitive, high-throughput, and reproducible immunopeptidome profiling with detection of clinically relevant peptides from less than 4e7 cells or 15 mg wet weight tissue.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Masculino , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Peptídeos/metabolismo , Linhagem Celular
11.
Blood ; 137(16): 2209-2220, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33512474

RESUMO

Casitas B-lineage lymphoma (CBL) encodes an E3 ubiquitin ligase and signaling adaptor that regulates receptor and nonreceptor tyrosine kinases. Recurrent CBL mutations occur in myeloid neoplasms, including 10% to 20% of chronic myelomonocytic leukemia (CMML) cases, and selectively disrupt the protein's E3 ubiquitin ligase activity. CBL mutations have been associated with poor prognosis, but the oncogenic mechanisms and therapeutic implications of CBL mutations remain incompletely understood. We combined functional assays and global mass spectrometry to define the phosphoproteome, CBL interactome, and mechanism of signaling activation in a panel of cell lines expressing an allelic series of CBL mutations. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced CBL phosphorylation, phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) recruitment, and downstream phosphatidylinositol 3-kinase (PI3K)/AKT signaling in CBL-mutant cells. Signaling adaptor domains of CBL, including the tyrosine kinase-binding domain, proline-rich region, and C-terminal phosphotyrosine sites, were all required for the oncogenic function of CBL mutants. Genetic ablation or dasatinib-mediated inhibition of LYN reduced CBL phosphorylation, CBL-PIK3R1 interaction, and PI3K/AKT signaling. Furthermore, we demonstrated in vitro and in vivo antiproliferative efficacy of dasatinib in CBL-mutant cell lines and primary CMML. Overall, these mechanistic insights into the molecular function of CBL mutations provide rationale to explore the therapeutic potential of LYN inhibition in CBL-mutant myeloid malignancies.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Quinases da Família src/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Mutação , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais
12.
Mol Cell Proteomics ; 20: 100154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592423

RESUMO

Robust methods for deep-scale enrichment and site-specific identification of ubiquitylation sites are necessary for characterizing the myriad roles of protein ubiquitylation. To this end we previously developed UbiFast, a sensitive method for highly multiplexed ubiquitylation profiling where K-ϵ-GG peptides are enriched with anti-K-ε-GG antibody and labeled on-antibody with isobaric labeling reagents for sample multiplexing. Here, we present robotic automation of the UbiFast method using a magnetic bead-conjugated K-ε-GG antibody (mK-ε-GG) and a magnetic particle processor. We report the identification of ∼20,000 ubiquitylation sites from a TMT10-plex with 500 µg input per sample processed in ∼2 h. Automation of the UbiFast method greatly increased the number of identified and quantified ubiquitylation sites, improved reproducibility, and significantly reduced processing time. The automated method also significantly reduced variability across process replicates compared with the manual method. The workflow enables processing of up to 96 samples in a single day making it suitable to study ubiquitylation in large sample sets. Here we demonstrate the applicability of the method to profile small amounts of tissue using breast cancer patient-derived xenograft (PDX) tissue samples.


Assuntos
Proteômica/métodos , Proteínas Ubiquitinadas/metabolismo , Animais , Anticorpos/imunologia , Automação , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Células Jurkat , Fenômenos Magnéticos , Neoplasias Mamárias Experimentais/metabolismo , Espectrometria de Massas , Camundongos , Peptídeos , Sefarose , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/imunologia , Ubiquitinação , Fluxo de Trabalho
13.
Proc Natl Acad Sci U S A ; 117(22): 12143-12154, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424107

RESUMO

Proximity labeling catalyzed by promiscuous enzymes, such as TurboID, have enabled the proteomic analysis of subcellular regions difficult or impossible to access by conventional fractionation-based approaches. Yet some cellular regions, such as organelle contact sites, remain out of reach for current PL methods. To address this limitation, we split the enzyme TurboID into two inactive fragments that recombine when driven together by a protein-protein interaction or membrane-membrane apposition. At endoplasmic reticulum-mitochondria contact sites, reconstituted TurboID catalyzed spatially restricted biotinylation, enabling the enrichment and identification of >100 endogenous proteins, including many not previously linked to endoplasmic reticulum-mitochondria contacts. We validated eight candidates by biochemical fractionation and overexpression imaging. Overall, split-TurboID is a versatile tool for conditional and spatially specific proximity labeling in cells.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteoma/análise , Biotinilação , Células HEK293 , Humanos , Proteoma/metabolismo , Coloração e Rotulagem
14.
Mol Cell ; 55(2): 332-41, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25002142

RESUMO

Obtaining complete protein inventories for subcellular regions is a challenge that often limits our understanding of cellular function, especially for regions that are impossible to purify and are therefore inaccessible to traditional proteomic analysis. We recently developed a method to map proteomes in living cells with an engineered peroxidase (APEX) that bypasses the need for organellar purification when applied to membrane-bound compartments; however, it was insufficiently specific when applied to unbounded regions that allow APEX-generated radicals to escape. Here, we combine APEX technology with a SILAC-based ratiometric tagging strategy to substantially reduce unwanted background and achieve nanometer spatial resolution. This is applied to map the proteome of the mitochondrial intermembrane space (IMS), which can freely exchange small molecules with the cytosol. Our IMS proteome of 127 proteins has >94% specificity and includes nine newly discovered mitochondrial proteins. This approach will enable scientists to map proteomes of cellular regions that were previously inaccessible.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Western Blotting , Fracionamento Celular , Células HEK293 , Humanos , Marcação por Isótopo , Membranas Mitocondriais/metabolismo
15.
Blood ; 134(2): 160-170, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31043423

RESUMO

Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies. Thalidomide analogs bind the CRL4CRBN ubiquitin ligase and induce degradation of particular proteins, but each of the molecules studied has distinct patterns of substrate specificity that likely underlie the clinical activity and toxicities of each drug. Our results demonstrate that the activity of molecules that induce protein degradation depends on the strength of ligase-substrate interaction in the presence of drug, the levels of the ubiquitin ligase, and the expression level of competing substrates. These findings highlight a novel mechanism of resistance to this class of drugs mediated by competition between substrates for access to a limiting pool of the ubiquitin ligase. We demonstrate that increased expression of a nonessential substrate can lead to decreased degradation of other substrates that are critical for antineoplastic activity of the drug, resulting in drug resistance. These studies provide general rules that govern drug-dependent substrate degradation and key differences between thalidomide analog activity in vitro and in vivo.


Assuntos
Proteólise/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/química , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/química , Neoplasias Hematológicas/enzimologia , Humanos , Especificidade por Substrato , Ubiquitina-Proteína Ligases/efeitos dos fármacos
16.
PLoS Biol ; 16(9): e2005903, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30208026

RESUMO

Ribosome-binding proteins function broadly in protein synthesis, gene regulation, and cellular homeostasis, but the complete complement of functional ribosome-bound proteins remains unknown. Using quantitative mass spectrometry, we identified late-annotated short open reading frame 2 (Lso2) as a ribosome-associated protein that is broadly conserved in eukaryotes. Genome-wide crosslinking and immunoprecipitation of Lso2 and its human ortholog coiled-coil domain containing 124 (CCDC124) recovered 25S ribosomal RNA in a region near the A site that overlaps the GTPase activation center. Consistent with this location, Lso2 also crosslinked to most tRNAs. Ribosome profiling of yeast lacking LSO2 (lso2Δ) revealed global translation defects during recovery from stationary phase with translation of most genes reduced more than 4-fold. Ribosomes accumulated at start codons, were depleted from stop codons, and showed codon-specific changes in occupancy in lso2Δ. These defects, and the conservation of the specific ribosome-binding activity of Lso2/CCDC124, indicate broadly important functions in translation and physiology.


Assuntos
Sequência Conservada , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Códon de Iniciação/genética , Regulação Fúngica da Expressão Gênica , Células HeLa , Humanos , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Nature ; 523(7559): 183-188, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26131937

RESUMO

Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1α) by the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)), resulting in CK1α degradation. CK1α is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1α. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4(CRBN). These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.


Assuntos
Caseína Quinase I/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/fisiopatologia , Talidomida/análogos & derivados , Ubiquitinação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Caseína Quinase I/genética , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fatores Imunológicos/farmacologia , Células Jurkat , Células K562 , Lenalidomida , Camundongos , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Proteólise/efeitos dos fármacos , Alinhamento de Sequência , Deleção de Sequência , Especificidade da Espécie , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
18.
Nat Methods ; 14(12): 1167-1170, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039416

RESUMO

Although purification of biotinylated molecules is highly efficient, identifying specific sites of biotinylation remains challenging. We show that anti-biotin antibodies enable unprecedented enrichment of biotinylated peptides from complex peptide mixtures. Live-cell proximity labeling using APEX peroxidase followed by anti-biotin enrichment and mass spectrometry yielded over 1,600 biotinylation sites on hundreds of proteins, an increase of more than 30-fold in the number of biotinylation sites identified compared to streptavidin-based enrichment of proteins.


Assuntos
Anticorpos/metabolismo , Biotina/metabolismo , Peptídeos/química , Proteínas/química , Biotecnologia/métodos , Biotinilação , Cromatografia Líquida , Células HEK293 , Humanos , Células Jurkat , Proteínas/isolamento & purificação , Coloração e Rotulagem , Estreptavidina/metabolismo , Espectrometria de Massas em Tandem
19.
Blood ; 132(14): 1535-1544, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30064974

RESUMO

Thalidomide and its derivatives, lenalidomide and pomalidomide, are clinically effective treatments for multiple myeloma and myelodysplastic syndrome with del(5q). These molecules lack activity in murine models, limiting investigation of their therapeutic activity or toxicity in vivo. Here, we report the development of a mouse model that is sensitive to thalidomide derivatives because of a single amino acid change in the direct target of thalidomide derivatives, cereblon (Crbn). In human cells, thalidomide and its analogs bind CRBN and recruit protein targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and subsequent degradation by the proteasome. We show that mice with a single I391V amino acid change in Crbn exhibit thalidomide-induced degradation of drug targets previously identified in human cells, including Ikaros (Ikzf1), Aiolos (Ikzf3), Zfp91, and casein kinase 1a1 (Ck1α), both in vitro and in vivo. We use the Crbn I391V model to demonstrate that the in vivo therapeutic activity of lenalidomide in del(5q) myelodysplastic syndrome can be explained by heterozygous expression of Ck1α in del(5q) cells. We found that lenalidomide acts on hematopoietic stem cells with heterozygous expression of Ck1α and inactivation of Trp53 causes lenalidomide resistance. We further demonstrate that Crbn I391V is sufficient to confer thalidomide-induced fetal loss in mice, capturing a major toxicity of this class of drugs. Further study of the Crbn I391V model will provide valuable insights into the in vivo efficacy and toxicity of this class of drugs.


Assuntos
Antineoplásicos/farmacologia , Lenalidomida/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Proteínas do Tecido Nervoso/genética , Mutação Puntual , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/química , Caseína Quinase I/metabolismo , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos dos fármacos , Lenalidomida/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Talidomida/análogos & derivados
20.
Proc Natl Acad Sci U S A ; 114(22): E4462-E4471, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28500272

RESUMO

The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lítio/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Química Encefálica , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA