Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668811

RESUMO

The application of instrumented indentation to assess material properties like Young's modulus and microhardness has become a standard method. In recent developments, indentation experiments and simulations have been combined to inverse methods, from which further material parameters such as yield strength, work hardening rate, and tensile strength can be determined. In this work, an inverse method is introduced by which material parameters for cyclic plasticity, i.e., kinematic hardening parameters, can be determined. To accomplish this, cyclic Vickers indentation experiments are combined with finite element simulations of the indentation with unknown material properties, which are then determined by inverse analysis. To validate the proposed method, these parameters are subsequently applied to predict the uniaxial stress-strain response of a material with success. The method has been validated successfully for a quenched and tempered martensitic steel and for technically pure copper, where an excellent agreement between measured and predicted cyclic stress-strain curves has been achieved. Hence, the proposed inverse method based on cyclic nanoindentation, as a quasi-nondestructive method, could complement or even substitute the resource-intensive conventional fatigue testing in the future for some applications.

2.
Materials (Basel) ; 12(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487915

RESUMO

Micromechanical fatigue lifetime predictions, in particular for the high cycle fatigue regime, require an appropriate modelling of mean stress effects in order to account for lifetime reducing positive mean stresses. Focus of this micromechanical study is the comparison of three selected fatigue indicator parameters (FIPs), with respect to their applicability to different total strain ratios. In this work, investigations are performed on the modelling and prediction of the fatigue crack initiation life of the martensitic high-strength steel SAE 4150 for two different total strain ratios. First, multiple martensitic statistical volume elements (SVEs) are generated by multiscale Voronoi tessellations. Micromechanical fatigue simulations are then performed on these SVEs by means of a crystal plasticity model to obtain microstructure dependent fatigue responses. In order to account for the material specific fatigue damage zone, a non-local homogenisation scheme for the FIPs is introduced for lath martensitic microstructures. The numerical results of the different non-local FIPs are compared with experimental fatigue crack initiation results for two different total strain ratios. It is concluded that the multiaxial fatigue criteria proposed by Fatemi-Socie is superior for predicting fatigue crack initiation life to the energy dissipation criteria and the accumulated plastic slip criteria for the investigated total strain ratios.

3.
Materials (Basel) ; 12(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159157

RESUMO

In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.

4.
Materials (Basel) ; 9(2)2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28787876

RESUMO

In most forming processes based on tailored blanks, the tool material remains the same as that of sheet metal blanks without tailored properties. A novel concept of lightweight construction for deep drawing tools is presented in this work to improve the forming behavior of tailored blanks. The investigations presented here deal with the forming of tailored blanks of dissimilar strengths using tailored dies made of two different materials. In the area of the steel blank with higher strength, typical tool steel is used. In the area of the low-strength steel, a hybrid tool made out of a polymer and a fiber-reinforced surface replaces the steel half. Cylindrical cups of DP600/HX300LAD are formed and analyzed regarding their formability. The use of two different halves of tool materials shows improved blank thickness distribution, weld-line movement and pressure distribution compared to the use of two steel halves. An improvement in strain distribution is also observed by the inclusion of springs in the polymer side of tools, which is implemented to control the material flow in the die. Furthermore, a reduction in tool weight of approximately 75% can be achieved by using this technique. An accurate finite element modeling strategy is developed to analyze the problem numerically and is verified experimentally for the cylindrical cup. This strategy is then applied to investigate the thickness distribution and weld-line movement for a complex geometry, and its transferability is validated. The inclusion of springs in the hybrid tool leads to better material flow, which results in reduction of weld-line movement by around 60%, leading to more uniform thickness distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA