Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(26): 18500-18509, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916526

RESUMO

Two-dimensional transition metal carbides and nitrides (MXenes) are a promising group of materials with a broad palette of applications. Surface terminations are a result of MXene preparation, and post-processing can also lead to partial coverage. Despite applicability and fundamental properties being driven by termination patterns, it is not fully clear how they behave on MXene surfaces with various degrees of surface coverage. Here, as the first step, we used density functional theory to predict possible patterns in prototypic Ti2C MXene, demonstrating the different behavior of the two most frequent terminal atoms, oxygen, and fluorine. Oxygen (with formal charge -2e) prefers a zigzag line both-side adsorption pattern on bare Ti2C, attracting the next adsorbent at a minimal distance. Oxygen defects in fully O-terminated MXene tend to form similar zigzag line vacancy patterns. On the other hand, fluorine (with a formal charge of -1e) prefers one-side flake (island) adsorption on bare Ti2C and a similar desorption style from fully fluorinated Ti2C. The magnetic behavior of the MXene is subsequently driven by the patterns, either compensating locally and holding the global magnetic state of the MXene until some limit (oxygen case) or gradually increasing the total magnetism through summation of local effects (fluorine case). The systematic combinatoric study of Ti2CTx with various coverages (0 ≤ x ≤ 2) of distinct terminal atoms T = O or F brings encouraging possibilities of tunable behavior of MXenes and provides useful guidance for its modeling towards electronic nanodevices.

2.
Inorg Chem ; 61(2): 950-967, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962391

RESUMO

The ruthenium nitrosyl moiety, {RuNO}6, is important as a potential releasing agent of nitric oxide and is of inherent interest in coordination chemistry. Typically, {RuNO}6 is found in mononuclear complexes. Herein we describe the synthesis and characterization of several multimetal cluster complexes that contain this unit. Specifically, the heterotrinuclear µ3-oxido clusters [Fe2RuCl4(µ3-O)(µ-OMe)(µ-pz)2(NO)(Hpz)2] (6) and [Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(MeOH)(NO)(Hpz)][Fe2RuCl3(µ3-O)(µ-OMe)(µ-pz)3(DMF)(NO)(Hpz)] (7·MeOH·2H2O) and the heterotetranuclear µ4-oxido complex [Ga3RuCl3(µ4-O)(µ-OMe)3(µ-pz)4(NO)] (8) were prepared from trans-[Ru(OH)(NO)(Hpz)4]Cl2 (5), which itself was prepared via acidic hydrolysis of the linear heterotrinuclear complex {[Ru(µ-OH)(µ-pz)2(pz)(NO)(Hpz)]2Mg} (4). Complex 4 was synthesized from the mononuclear Ru complexes (H2pz)[trans-RuCl4(Hpz)2] (1), trans-[RuCl2(Hpz)4]Cl (2), and trans-[RuCl2(Hpz)4] (3). The new compounds 4-8 were all characterized by elemental analysis, ESI mass spectrometry, IR, UV-vis, and 1H NMR spectroscopy, and single-crystal X-ray diffraction, with complexes 6 and 7 being characterized also by temperature-dependent magnetic susceptibility measurements and Mössbauer spectroscopy. Magnetometry indicated a strong antiferromagnetic interaction between paramagnetic centers in 6 and 7. The ability of 4 and 6-8 to form linkage isomers and release NO upon irradiation in the solid state was investigated by IR spectroscopy. A theoretical investigation of the electronic structure of 6 by DFT and ab initio CASSCF/NEVPT2 calculations indicated a redox-noninnocent behavior of the NO ancillary ligand in 6, which was also manifested in TD-DFT calculations of its electronic absorption spectrum. The electronic structure of 6 was also studied by an X-ray charge density analysis.

3.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299414

RESUMO

Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2- species also shows an affinity forwards CO2.

4.
J Comput Chem ; 41(7): 698-714, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31804728

RESUMO

Geometry optimization, energetics, electronic structure, and topology of electron density of dicopper (I) and dichromium (II) tetrakis(µ-acetato)-diaqua complexes are studied focusing on the metal-metal interactions. The performance of broken symmetry (BS) single-determinant ab initio (Hartree-Fock, Møller-Plesset perturbation theory to the second and third orders, coupled clusters singles and doubles) and density functional theory (BLYP, B3LYP, B3LYP-D3, B2PLYP, MPW2PLYP) methods is compared to multideterminant ab initio (CASSCF, NEVPT2) methods as well as to the multipole model of charge density from a single-crystal X-ray diffraction experiment (Herich et al., Acta Cryst. 2018, B74, 681-692). In vacuo DFT geometry optimizations (improper axial water ligand orientation) are compared against the periodic ones. The singlet state is found to be energetically preferred. J coupling of (I) becomes underestimated for all ab initio methods used, when compared to experiment. It is concluded that the strength of the direct M─M interactions correlates closely with the J coupling magnitude at a given level of theory. The double potential well character of (II) and of the dehydrated form of (II) are considered with respect to the Cr─Cr distance. The physical effective bond order of the metal-metal interaction is small (below 0.1 e) in (I) and moderate (0.4 e) in (II). The CASSCF results overestimate the electron density of the metal-metal bond critical point by 20% and 50% in (I) and (II), respectively, when compared to the multipole model. © 2019 Wiley Periodicals, Inc.

5.
Nanoscale Adv ; 5(24): 7067-7076, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059028

RESUMO

In the last six years, the synthesis of MXene-based quantum dots (MXQDs) has gained widespread attention. Due to the quantum confinement effect, it is possible to significantly improve their properties compared to 2D counterparts, such as higher chemical stability and better electronic and optical properties. However, despite the growing interest in their properties, much remains unexplored. One of the biggest challenges is to study in more detail the structure of quantum dots, in particular, their edge functionalization and its effect on their properties. In this paper, the structural stability and electronic and magnetic properties of Ti2CO2 QDs based on different lateral dimensions and edge functionalization (-O, -F, and -OH) are investigated using density functional theory. The study shows that the energy gap of Ti2CO2-O QDs decreases with increasing lateral size for both nonmagnetic (spin-unpolarized, close shell) and magnetic (spin-polarized, open shell) cases. Furthermore, the magnetic behavior of quantum dots was revealed by shrinking from 2D Ti2CO2 to 0D Ti2CO2 QDs with lateral dimensions below 1.4 nm. The binding energy confirms the stability of all three types of edge functionalization, while the most stable structure was observed under fully saturated edge oxygenation. Moreover, it was also found that the spin density distribution and the energy gap of Ti2CO2-X QDs (X = O, F, and OH) are both dependent on the type of atom saturation. Size and edge confinement modeling has been demonstrated to be an effective tool for tuning the electronic and magnetic properties of MXQDs. Moreover, the observed enhanced spin polarization together with tunable magnetic properties makes the ultrafine Ti2CO2-X QDs promising candidates for spintronic applications.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 450-468, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831263

RESUMO

The structure of 4-methyl-3-[(tetrahydro-2H-pyran-2-yl)oxy]thiazole-2(3H)-thione (MTTOTHP) was investigated using X-ray diffraction and computational chemistry methods for determining properties of the nitrogen-oxygen bond, which is the least stable entity upon photochemical excitation. Experimentally measured structure factors have been used to determine and characterize charge density via the multipole model (MM) and the maximum entropy method (MEM). Theoretical investigation of the electron density and the electronic structure has been performed in the finite basis set density functional theory (DFT) framework. Quantum Theory of Atoms In Molecules (QTAIM), deformation densities and Laplacians maps have been used to compare theoretical and experimental results. MM experimental results and predictions from theory differ with respect to the sign and/or magnitude of the Laplacian at the N-O bond critical point (BCP), depending on the treatment of n values of the MM radial functions. Such Laplacian differences in the N-O bond case are discussed with respect to a lack of flexibility in the MM radial functions also reported by Rykounov et al. [Acta Cryst. (2011), B67, 425-436]. BCP Hessian eigenvalues show qualitatively matching results between MM and DFT. In addition, the theoretical analysis used domain-averaged fermi holes (DAFH), natural bond orbital (NBO) analysis and localized (LOC) orbitals to characterize the N-O bond as a single σ bond with marginal π character. Hirshfeld atom refinement (HAR) has been employed to compare to the MM refinement results and/or neutron dataset C-H bond lengths and to crystal or single molecule geometry optimizations, including considerations of anisotropy of H atoms. Our findings help to understand properties of molecules like MTTOTHP as progenitors of free oxygen radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA