Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(43): 21469-21477, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591202

RESUMO

We report on a large area of ancient Maya wetland field systems in Belize, Central America, based on airborne lidar survey coupled with multiple proxies and radiocarbon dates that reveal ancient field uses and chronology. The lidar survey indicated four main areas of wetland complexes, including the Birds of Paradise wetland field complex that is five times larger than earlier remote and ground survey had indicated, and revealed a previously unknown wetland field complex that is even larger. The field systems date mainly to the Maya Late and Terminal Classic (∼1,400-1,000 y ago), but with evidence from as early as the Late Preclassic (∼1,800 y ago) and as late as the Early Postclassic (∼900 y ago). Previous study showed that these were polycultural systems that grew typical ancient Maya crops including maize, arrowroot, squash, avocado, and other fruits and harvested fauna. The wetland fields were active at a time of population expansion, landscape alteration, and droughts and could have been adaptations to all of these major shifts in Maya civilization. These wetland-farming systems add to the evidence for early and extensive human impacts on the global tropics. Broader evidence suggests a wide distribution of wetland agroecosystems across the Maya Lowlands and Americas, and we hypothesize the increase of atmospheric carbon dioxide and methane from burning, preparing, and maintaining these field systems contributed to the Early Anthropocene.


Assuntos
Agricultura/história , Arqueologia , Belize , Civilização/história , Florestas , História Antiga , Humanos , Lasers , Fotometria , Solo/química , Áreas Alagadas
2.
Proc Natl Acad Sci U S A ; 111(52): 18513-8, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512500

RESUMO

Tikal has long been viewed as one of the leading polities of the ancient Maya realm, yet how the city was able to maintain its substantial population in the midst of a tropical forest environment has been a topic of unresolved debate among researchers for decades. We present ecological, paleoethnobotanical, hydraulic, remote sensing, edaphic, and isotopic evidence that reveals how the Late Classic Maya at Tikal practiced intensive forms of agriculture (including irrigation, terrace construction, arboriculture, household gardens, and short fallow swidden) coupled with carefully controlled agroforestry and a complex system of water retention and redistribution. Empirical evidence is presented to demonstrate that this assiduously managed anthropogenic ecosystem of the Classic period Maya was a landscape optimized in a way that provided sustenance to a relatively large population in a preindustrial, low-density urban community. This landscape productivity optimization, however, came with a heavy cost of reduced environmental resiliency and a complete reliance on consistent annual rainfall. Recent speleothem data collected from regional caves showed that persistent episodes of unusually low rainfall were prevalent in the mid-9th century A.D., a time period that coincides strikingly with the abandonment of Tikal and the erection of its last dated monument in A.D. 869. The intensified resource management strategy used at Tikal-already operating at the landscape's carrying capacity-ceased to provide adequate food, fuel, and drinking water for the Late Classic populace in the face of extended periods of drought. As a result, social disorder and abandonment ensued.


Assuntos
Civilização , Florestas , Reforma Urbana/história , História Antiga , História Medieval , Humanos , México
3.
Proc Natl Acad Sci U S A ; 109(31): 12408-13, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802627

RESUMO

The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide.


Assuntos
Irrigação Agrícola/história , Lagos , Abastecimento de Água/história , Antropologia Cultural , Guatemala , História Antiga , História Medieval
4.
Sci Rep ; 14(1): 2972, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453955

RESUMO

Humans have a long history of transporting and trading plants, contributing to the evolution of domesticated plants. Theobroma cacao originated in the Neotropics from South America. However, little is known about its domestication and use in these regions. In this study, ceramic residues from a large sample of pre-Columbian cultures from South and Central America were analyzed using archaeogenomic and biochemical approaches. Here we show, for the first time, the widespread use of cacao in South America out of its native Amazonian area of origin, extending back 5000 years, likely supported by cultural interactions between the Amazon and the Pacific coast. We observed that strong genetic mixing between geographically distant cacao populations occurred as early as the middle Holocene, in South America, driven by humans, favoring the adaptation of T. cacao to new environments. This complex history of cacao domestication is the basis of today's cacao tree populations and its knowledge can help us better manage their genetic resources.


Assuntos
Cacau , Domesticação , Humanos , Cacau/genética , América do Sul , América Central
5.
Sci Rep ; 10(1): 10316, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587274

RESUMO

Understanding civilizations of the past and how they emerge and eventually falter is a primary research focus of archaeological investigations because these provocative data sets offer critical insights into long-term human behavior patterns, especially in regard to land use practices and sustainable environmental interactions. The ancient Maya serve as an intriguing example of this research focus, yet the details of their spectacular emergence in a tropical forest environment followed by their eventual demise have remained enigmatic. Tikal, one of the foremost of the ancient Maya cities, plays a central role in this discussion because of its sharp population decline followed by abandonment during the late 9th century CE. Our results, based on geochemical and molecular genetic assays on sediments from four of the main reservoirs, reveal that two of the largest reservoirs at Tikal, essential for the survival of the city during the dry seasons, were contaminated with high levels of mercury, phosphate and cyanobacteria known to produce deadly toxins. Our observations demonstrate severe pollution problems at a time when episodes of climatic aridity were prevalent. This combination of catastrophic events clearly threatened the sustainability of the city and likely contributed to its abandonment.

6.
Nature ; 418(6895): 289-90, 2002 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12124611

RESUMO

The Maya archaeological site at Colha in northern Belize, Central America, has yielded several spouted ceramic vessels that contain residues from the preparation of food and beverages. Here we analyse dry residue samples by using high-performance liquid chromatography coupled to atmospheric-pressure chemical-ionization mass spectrometry, and show that chocolate (Theobroma cacao) was consumed by the Preclassic Maya as early as 600 bc, pushing back the earliest chemical evidence of cacao use by some 1,000 years. Our application of this new and highly sensitive analytical technique could be extended to the identification of other ancient foods and beverages.


Assuntos
Bebidas/história , Cacau/história , Arqueologia/métodos , Belize , Cacau/química , Cerâmica/história , Cromatografia Líquida de Alta Pressão , História Antiga , Espectrometria de Massas , Teobromina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA