Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L555-L568, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351448

RESUMO

The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o- cells lacking functional CFTR (iCFTR-) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR+). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR+ cells, iCFTR- cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR- cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.


Assuntos
Proteína ADAM17/metabolismo , Brônquios/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Epitélio/patologia , Proteína ADAM17/genética , Anfirregulina/genética , Anfirregulina/metabolismo , Brônquios/metabolismo , Diferenciação Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas/metabolismo , Epitélio/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Oxirredução , Fosforilação
2.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190273

RESUMO

Cystic fibrosis (CF) lung disease progressively worsens from infancy to adulthood. Disease-driven changes in early CF airway fluid metabolites may identify therapeutic targets to curb progression.CF patients aged 12-38 months (n=24; three out of 24 later denoted as CF screen positive, inconclusive diagnosis) received chest computed tomography scans, scored by the Perth-Rotterdam Annotated Grid Morphometric Analysis for CF (PRAGMA-CF) method to quantify total lung disease (PRAGMA-%Dis) and components such as bronchiectasis (PRAGMA-%Bx). Small molecules in bronchoalveolar lavage fluid (BALF) were measured with high-resolution accurate-mass metabolomics. Myeloperoxidase (MPO) was quantified by ELISA and activity assays.Increased PRAGMA-%Dis was driven by bronchiectasis and correlated with airway neutrophils. PRAGMA-%Dis correlated with 104 metabolomic features (p<0.05, q<0.25). The most significant annotated feature was methionine sulfoxide (MetO), a product of methionine oxidation by MPO-derived oxidants. We confirmed the identity of MetO in BALF and used reference calibration to confirm correlation with PRAGMA-%Dis (Spearman's ρ=0.582, p=0.0029), extending to bronchiectasis (PRAGMA-%Bx; ρ=0.698, p=1.5×10-4), airway neutrophils (ρ=0.569, p=0.0046) and BALF MPO (ρ=0.803, p=3.9×10-6).BALF MetO associates with structural lung damage, airway neutrophils and MPO in early CF. Further studies are needed to establish whether methionine oxidation directly contributes to early CF lung disease and explore potential therapeutic targets indicated by these findings.


Assuntos
Bronquiectasia/metabolismo , Fibrose Cística/metabolismo , Metionina/análogos & derivados , Peroxidase/metabolismo , Líquido da Lavagem Broncoalveolar/química , Broncoscopia , Pré-Escolar , Fibrose Cística/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Lactente , Pulmão/metabolismo , Masculino , Metionina/metabolismo , Neutrófilos/metabolismo , Oxidantes/farmacologia , Oxirredução , Estudos Prospectivos , Tomografia Computadorizada por Raios X
3.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L1000-L1014, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663991

RESUMO

Progressive lung disease with early onset is the main cause of mortality and morbidity in cystic fibrosis patients. Here we report a reduction of sphingosine-1-phosphate (S1P) in the lung of unchallenged Cftrtm1EUR F508del CFTR mutant mice. This correlates with enhanced infiltration by inducible nitric oxide synthase (iNOS)-expressing granulocytes, B cells, and T cells. Furthermore, the ratio of macrophage-derived dendritic cells (MoDC) to conventional dendritic cells (cDC) is higher in mutant mouse lung, consistent with unprovoked inflammation. Oral application of a S1P lyase inhibitor (LX2931) increases S1P levels in mutant mouse tissues. This normalizes the lung MoDC/cDC ratio and reduces B and T cell counts. Lung granulocytes are enhanced, but iNOS expression is reduced in this population. Although lung LyC6+ monocytes are enhanced by LX2931, they apparently do not differentiate to MoDC and macrophages. After challenge with bacterial toxins (LPS-fMLP) we observe enhanced levels of proinflammatory cytokines TNF-α, KC, IFNγ, and IL-12 and the inducible mucin MUC5AC in mutant mouse lung, evidence of deficient resolution of inflammation. LX2931 does not prevent transient inflammation or goblet cell hyperplasia after challenge, but it reduces MUC5AC and proinflammatory cytokine levels toward normal values. We conclude that lung pathology in homozygous mice expressing murine F508del CFTR, which represents the most frequent mutation in CF patients, is characterized by abnormal behavior of infiltrating myeloid cells and delayed resolution of induced inflammation. This phenotype can be partially corrected by a S1P lyase inhibitor, providing a rationale for therapeutic targeting of the S1P signaling pathway in CF patients.


Assuntos
Aldeído Liases/antagonistas & inibidores , Fibrose Cística/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Imidazóis/uso terapêutico , Oximas/uso terapêutico , Pneumonia/tratamento farmacológico , Aldeído Liases/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imidazóis/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Mucina-5AC/metabolismo , Mutação/genética , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Oximas/farmacologia , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Microtomografia por Raio-X
4.
Toxicon X ; 21: 100185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425752

RESUMO

Snakebite envenoming is a priority Neglected Tropical Disease that causes an estimated 81,000-135,000 fatalities each year. The development of a new generation of safer, affordable, and accessible antivenom therapies is urgently needed. With this goal in mind, rigorous characterisation of the specific toxins in snake venom is key to generating novel therapies for snakebite. Monoclonal antibodies directed against venom toxins are emerging as potentially strong candidates in the development of new snakebite diagnostics and treatment. Venoms comprise many different toxins of which several are responsible for their pathological effects. Due to the large variability of venoms within and between species, formulations of combinations of human antibodies are proposed as the next generation antivenoms. Here a high-throughput screening method employing antibody-based ligand fishing of venom toxins in 384 filter-well plate format has been developed to determine the antibody target/s The approach uses Protein G beads for antibody capture followed by exposure to a full venom or purified toxins to bind their respective ligand toxin(s). This is followed by a washing/centrifugation step to remove non-binding toxins and an in-well tryptic digest. Finally, peptides from each well are analysed by nanoLC-MS/MS and subsequent Mascot database searching to identify the bound toxin/s for each antibody under investigation. The approach was successfully validated to rapidly screen antibodies sourced from hybridomas, derived from venom-immunised mice expressing either regular human antibodies or heavy-chain-only human antibodies (HCAbs).

5.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732550

RESUMO

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Assuntos
Fibrose Cística , Criança , Humanos , Receptor de Morte Celular Programada 1 , Pulmão , Inflamação , Bactérias/metabolismo , Biomarcadores/metabolismo , Macrófagos
6.
Front Physiol ; 12: 619442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613309

RESUMO

A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.

7.
J Cyst Fibros ; 19(6): 902-909, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32057679

RESUMO

BACKGROUND: Previously, we showed that abnormal levels of bioactive lipids in bronchoalveolar lavage fluid (BALF) from infants with cystic fibrosis (CF) correlated with early structural lung damage. METHOD: To extend these studies, BALF bioactive lipid measurement by mass spectrometry and chest computed tomography (CT, combined with the sensitive PRAGMA-CF scoring method) were performed longitudinally at 2-year intervals in a new cohort of CF children (n = 21, aged 1-5 yrs). RESULTS: PRAGMA-CF, neutrophil elastase activity, and myeloperoxidase correlated with BALF lysolipids and isoprostanes, markers of oxidative stress, as well as prostaglandin E2 and combined ceramide precursors (Spearman's Rho > 0.5; P < 0.01 for all). Multiple protein agonists of inflammation and tissue remodeling, measured by Olink protein array, correlated positively (r = 0.44-0.79, p < 0.05) with PRAGMA-CF scores and bioactive lipid levels. Notably, levels of lysolipids, prostaglandin E2 and isoprostanes at first BALF predicted the evolution of PRAGMA-CF scores 2 years later. In wild-type differentiated primary bronchial epithelial cells, and in CFTR-inducible iCFBE cells, treatment with a lysolipid receptor agonist (VPC3114) enhanced shedding of pro-inflammatory and pro-fibrotic proteins. CONCLUSIONS: Together, our findings suggest that bioactive lipids in BALF correlate with and possibly predict structural lung disease in CF children, which supports their use as biomarkers of disease progression and treatment efficacy. Furthermore, our data suggest a causative role of airway lysolipids and oxidative stress in the progression of early CF lung disease, unveiling potential therapeutic targets.


Assuntos
Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Fibrose Cística/metabolismo , Metabolismo dos Lipídeos , Sistema Respiratório/metabolismo , Broncoscopia , Pré-Escolar , Citocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Lactente , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estudos Longitudinais , Masculino , Estresse Oxidativo , Tomografia Computadorizada por Raios X
8.
J Cyst Fibros ; 18(6): 781-789, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31031161

RESUMO

BACKGROUND: Clinical data indicate that airway inflammation in children with cystic fibrosis (CF) arises early, is associated with structural lung damage, and predicts progression. In bronchoalveolar lavage fluid (BALF) from CFTR mutant mice, several aspects of lipid metabolism are abnormal that contributes to lung disease. We aimed to determine whether lipid pathway dysregulation is also observed in BALF from children with CF, to identify biomarkers of early lung disease and potential therapeutic targets. METHODS: A comprehensive panel of lipids that included Sphingolipids, oxylipins, isoprostanes and lysolipids, all bioactive lipid species known to be involved in inflammation and tissue remodeling, were measured in BALF from children with CF (1-6 years, N = 33) and age-matched non-CF patients with unexplained inflammatory disease (N = 16) by HPLC-MS/MS. Lipid data were correlated with chest CT scores and BALF inflammation biomarkers. RESULTS: The ratio of long chain to very long chain ceramide species (LCC/VLCC) and lysolipid levels were enhanced in CF compared to non-CF patients, despite comparable neutrophil counts and bacterial load. In CF patients both LCC/VLCC and lysolipid levels correlated with inflammation and chest CT scores. The ceramide precursors Sphingosine, Sphinganine, Sphingomyelin, correlated with inflammation, whilst the oxidative stress marker isoprostane correlated with inflammation and chest CT scores. No correlation between lipids and current bacterial infection in CF (N = 5) was observed. CONCLUSIONS: Several lipid biomarkers of early CF lung disease were identified, which point toward potential disease monitoring and therapeutic approaches that can be used to complement CFTR modulators.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Fibrose Cística , Isoprostanos , Pulmão , Estresse Oxidativo/imunologia , Oxilipinas , Esfingolipídeos , Biomarcadores/análise , Biomarcadores/metabolismo , Contagem de Células/métodos , Pré-Escolar , Fibrose Cística/diagnóstico , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Progressão da Doença , Feminino , Humanos , Inflamação/metabolismo , Isoprostanos/análise , Isoprostanos/metabolismo , Lipidômica/métodos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Oxilipinas/análise , Oxilipinas/metabolismo , Esfingolipídeos/análise , Esfingolipídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
9.
Stem Cell Reports ; 12(6): 1389-1403, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31080112

RESUMO

Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared with immortalized cell lines and primary cell cultures, but implementation of iPSC-based high-throughput (HT) assays is still technically challenging. Here, we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using cystic fibrosis (CF) disease-specific iPSCs. The introduction of a halide-sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ∼42,500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modeling can also be utilized for drug screening in a true HT format.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Células Epiteliais , Engenharia Genética , Células-Tronco Pluripotentes Induzidas , Quinolonas/farmacologia , Sequência de Aminoácidos , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Deleção de Sequência
10.
Free Radic Biol Med ; 126: 334-340, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144632

RESUMO

Thiocyanate is a heme peroxidase substrate that scavenges oxidants produced during inflammation and regulates host defense. In cystic fibrosis (CF) patients, increased airway thiocyanate levels are associated with improved lung function. Research on airway thiocyanate is limited, however, because convenient non-invasive airway sampling methods, such as exhaled breath condensate (EBC), yield low concentrations that are difficult to detect with available assays. In the present study, we developed a method for the determination of thiocyanate in dilute samples using isotope dilution headspace gas chromatography-coupled high-resolution, accurate-mass mass spectrometry (GC-HRMS). The method reliably quantified as little as 4 pmol thiocyanate in EBC and could detect even lower amounts. We successfully measured thiocyanate in EBC from seven healthy donors, with a mean ±â€¯SD of 27 ±â€¯16 nM and a median inter-assay coefficient of variation of 10.4% over six months. The method was applied to other biological fluids (plasma from the same visit as EBC donation; bronchoalveolar lavage fluid [BALF] from infants with CF; and healthy adult mouse BALF), giving reliable quantification of samples ranging from 10 nM to 100 µM. Thiocyanate concentrations in fluids besides EBC were (from lowest to highest): 0.73 ±â€¯0.39 µM in BALF of healthy adult mice (n = 6); 1.4 ±â€¯1.4 µM in BALF from infants with CF (n = 24); 46 ±â€¯22 µM in the plasma of adult volunteers (n = 7). These results demonstrate the utility of this new method for clinical determination of thiocyanate in EBC and other biological fluids.


Assuntos
Testes Respiratórios/métodos , Fibrose Cística/diagnóstico , Inflamação/metabolismo , Tiocianatos/metabolismo , Animais , Biomarcadores/química , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Cromatografia Gasosa , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Expiração , Feminino , Humanos , Lactente , Inflamação/diagnóstico , Inflamação/patologia , Masculino , Camundongos , Tiocianatos/química , Tiocianatos/isolamento & purificação
11.
Physiol Rep ; 4(16)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27561911

RESUMO

Aberrant activity of a disintegrin and metalloprotease 17 (ADAM17), also known as TACE, and epidermal growth factor receptor (EGFR) has been suggested to contribute to chronic obstructive pulmonary disease (COPD) development and progression. The aim of this study was to investigate the role of these proteins in activation of primary bronchial epithelial cells differentiated at the air-liquid interface (ALI-PBEC) by whole cigarette smoke (CS), comparing cells from COPD patients with non-COPD CS exposure of ALI-PBEC enhanced ADAM17-mediated shedding of the IL-6 receptor (IL6R) and the EGFR agonist amphiregulin (AREG) toward the basolateral compartment, which was more pronounced in cells from COPD patients than in non-COPD controls. CS transiently increased IL6R and AREG mRNA in ALI-PBEC to a similar extent in cultures from both groups, suggesting that posttranslational events determine differential shedding between COPD and non-COPD cultures. We show for the first time by in situ proximity ligation (PLA) that CS strongly enhances interactions of phosphorylated ADAM17 with AREG and IL-6R in an intracellular compartment, suggesting that CS-induced intracellular trafficking events precede shedding to the extracellular compartment. Both EGFR and ADAM17 activity contribute to CS-induced IL-6R and AREG protein shedding and to mRNA expression, as demonstrated using selective inhibitors (AG1478 and TMI-2). Our data are consistent with an autocrine-positive feedback mechanism in which CS triggers shedding of EGFR agonists evoking EGFR activation, in ADAM17-dependent manner, and subsequently transduce paracrine signaling toward myeloid cells and connective tissue. Reducing ADAM17 and EGFR activity could therefore be a therapeutic approach for the tissue remodeling and inflammation observed in COPD.


Assuntos
Proteína ADAM17/genética , Brônquios/citologia , Células Epiteliais/metabolismo , Receptores ErbB/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/genética , Receptores de Interleucina-6/metabolismo , Fumar/metabolismo , Idoso , Remodelação das Vias Aéreas , Anfirregulina , Feminino , Humanos , Exposição por Inalação , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Quinazolinas/metabolismo , Transdução de Sinais , Fumar/efeitos adversos , Nicotiana/efeitos adversos , Tirfostinas/administração & dosagem , Tirfostinas/efeitos adversos , Tirfostinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA