Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38853306

RESUMO

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Assuntos
Ácido Abscísico , Capsicum , Secas , Fotossíntese , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Capsicum/fisiologia , Capsicum/genética , Capsicum/metabolismo , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiologia , Arachis/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistência à Seca
2.
J Genet Eng Biotechnol ; 22(2): 100380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797550

RESUMO

An effective CRISPR/Cas9 reagent delivery system has been developed in a commercially significant crop, the chilli pepper using a construct harboring two distinct gRNAs targeting exons 14 and 15 of the Phytoene desaturase (CaPDS) gene, whose loss-of-function mutation causes a photo-bleaching phenotype and impairs the biosynthesis of carotenoids. The construct carrying two sgRNAs was observed to create visible albino phenotypes in cotyledons regenerating on a medium containing 80 mg/L kanamycin, and plants regenerated therefrom after biolistic-mediated transfer of CRISPR/Cas9 reagents into chilli pepper cells. Analysis of CRISPR/Cas9 genome-editing events, including kanamycin screening of mutants and assessing homozygosity using the T7 endonuclease assay (T7E1), revealed 62.5 % of transformed plants exhibited successful editing at the target region and displayed both albino and mosaic phenotypes. Interestingly, the sequence analysis showed that insertions and substitutions were present in all the plant lines in the targeted CaPDS region. The detected mutations were mostly 12- to 24-bp deletions that disrupted the exon-intron junction, along with base substitutions and the insertion of 1-bp at the protospacer adjacent motif (PAM) region of the target site. The reduction in essential photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid) in knockout chilli pepper lines provided further evidence that the CaPDS gene had been functionally disrupted. In this present study, we report that the biolistic delivery of CRISPR/Cas9 reagents into chilli peppers is very effective and produces multiple mutation events in a short span of time.

3.
Plant Physiol Biochem ; 194: 302-314, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442361

RESUMO

In contrast to bacterial, yeast and animal systems, topoisomerases (topo) from plants have not been well studied. In this report, we generated four truncated topoisomerase II (Topo II) cDNA fragments encoding different functional domains of Nicotiana tabacum topo II (NtTopoII). Each of these recombinant polypeptides was expressed alone or in combination in temperature-sensitive topoisomerase II yeast mutants. Recombinant NtTopoII with truncated polypeptides fails to target the yeast nuclei and does not rescue the temperature-sensitive phenotype. In contrast complementation was achieved with the full-length NtTopoII, which localized to the yeast nucleus. These observations suggested the presence of a potent nuclear localization signal (NLS) in the extreme C-terminal 314 amino acid residues of NtTopoII that functioned effectively in the heterologous yeast system. Biochemical characterization of purified recombinant full-length and the partial NtTopoII polypeptides revealed that the ATP-binding and hydrolysis region of NtTopoIIwas located at 413 amino acid N-terminal region and this ATPase domain is functional both when it is expressed as a separate polypeptide or as part of the holoenzyme. The present findings also revealed that all NtTopoII truncated polypeptides were detrimental for in vitro supercoiled DNA relaxation and/or DNA nicking and ligation activity. Further, we discuss the possible disruption of coordinated macromolecular interface movements and the dimer interactions in truncated NtTopoII that are required for functional topoisomerase activity.


Assuntos
DNA Topoisomerases Tipo II , Nicotiana , Animais , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Sequência de Aminoácidos , Saccharomyces cerevisiae/metabolismo , Aminoácidos
4.
Saudi J Biol Sci ; 29(6): 103292, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35540178

RESUMO

Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l-1 in combination with 0.1 mg l-1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l-1), IAA (0.5 mg l-1), and ZEA (0.5 mg l-1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l-1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA