Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(12): 5151-5161, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34775751

RESUMO

The several interesting activities detected for fucosylated chondroitin sulfate (fCS) have fueled in the last years several efforts toward the obtainment of fCS oligosaccharides and low molecular weight (LMW) polysaccharides with a well-defined structure, in order to avoid the problems associated with the potential employment of native, sea cucumber sourced fCSs as a drug. Total synthesis and controlled depolymerization of the natural fCS polysaccharides are the main approaches to this aim; nonetheless, they present some limitations. These could be circumvented by semisynthesis, a strategy relying upon the regioselective fucosylation and sulfation of a microbial sourced polysaccharide sharing the same chondroitin backbone of fCS but devoid of any fucose (Fuc) and sulfate decoration on it. This approach is highly versatile, as it could open access also to fCS isomers carrying Fuc and sulfate groups at non-natural sites. Here we prepare for the first time some structurally homogeneous fCS isomers through a multistep procedure with a glycosylation reaction between a LMW polysaccharide acceptor and three different Fuc donors as key step. The obtained products were subjected to a detailed structural characterization by 2D-NMR. The conformational behavior was also investigated by NMR and molecular dynamics simulation methods and compared with data reported for natural fCS.


Assuntos
Sulfatos de Condroitina , Pepinos-do-Mar , Animais , Sulfatos de Condroitina/química , Fucose/química , Polissacarídeos , Pepinos-do-Mar/química
2.
Org Biomol Chem ; 18(27): 5157-5163, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32583825

RESUMO

α-Glycosides are highly relevant synthetic targets due to their abundance in natural oligosaccharides involved in many biological processes. Nevertheless their preparation is hampered by several issues, due to both the strictly anhydrous conditions typically required in glycosylation procedures and the non-trivial achievement of high α-stereoselectivity, one of the major challenges in oligosaccharide synthesis. In this paper we report a novel and efficient approach for the highly stereoselective synthesis of α-glycosides. This is based on the unprecedented solvent-free combination of triethylphosphite, tetrabutylammonium bromide and N,N-diisopropylethylamine for the activation of glycosyl chlorides under air. Despite the relative stability of glycosyl chlorides with respect to more reactive halide donors, the solvent-free procedure allowed a wide set of α-glycosides, including biorelevant fragments, to be obtained in much shorter times compared with similar glycosylation approaches in solution. The presented method features a wide target scope and functional group compatibility, also serving with partially disarmed substrates, and it does not require a high stoichiometric excess of reagents nor the preparation of expensive precursors. The solvent-free glycosylation can be even directly performed from 1-hydroxy sugars without purification of the in situ generated chloride, providing an especially useful opportunity in the case of highly reactive and labile glycosyl donors.


Assuntos
Cloretos/química , Glicosídeos/síntese química , Compostos de Amônio/química , Glicosilação , Fosfitos/química , Solventes/química , Estereoisomerismo
3.
Mar Drugs ; 18(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492857

RESUMO

Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan (GAG) polysaccharide with a unique structure, displaying a backbone composed of alternating N-acetyl-d-galactosamine (GalNAc) and d-glucuronic acid (GlcA) units on which l-fucose (Fuc) branches are installed. fCS shows several potential biomedical applications, with the anticoagulant activity standing as the most promising and widely investigated one. Natural fCS polysaccharides extracted from marine organisms (Echinoidea, Holothuroidea) present some advantages over a largely employed antithrombotic drug such as heparin, but some adverse effects as well as a frequently found structural heterogeneity hamper its development as a new drug. To circumvent these drawbacks, several efforts have been made in the last decade to obtain synthetic and semi-synthetic fCS oligosaccharides and low molecular weight polysaccharides. In this Review we have for the first time collected these reports together, dividing them in two topics: (i) total syntheses of fCS oligosaccharides and (ii) semi-synthetic approaches to fCS oligosaccharides and low molecular weight polysaccharides as well as glycoclusters displaying multiple copies of fCS species.


Assuntos
Sulfatos de Condroitina/síntese química , Fibrinolíticos/síntese química , Animais , Sulfatos de Condroitina/efeitos adversos , Sulfatos de Condroitina/química , Fibrinolíticos/química , Pepinos-do-Mar/química
4.
Biomacromolecules ; 20(8): 3021-3030, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31287284

RESUMO

Chondroitin sulfate (CS) is a glycosaminoglycan playing several biological functions, which seem to be encoded through its sulfation pattern. This "sulfation code" is still to be deciphered. One of the barriers to this goal is the difficulty in achieving structurally well-defined CS polysaccharides since extraction from natural sources often leads to complex heterogeneous structures. Instead, an approach relying on chemical modification of a microbially sourced unsulfated chondroitin can allow access to semisynthetic CS polysaccharides with a well-defined sulfation pattern. We report herein some new, suitably developed chemical strategies affording CSs with unprecedented sulfation patterns, carrying a single sulfate group regioselectively placed at either C-2 or C-3 position of the glucuronic acid residues or at both sites. In this way, all the possible variants of CS sulfation patterns can be now accessed. This will allow more detailed and complete structure-activity relationship investigations of CS biological functions and applications.


Assuntos
Sulfatos de Condroitina/química , Escherichia coli/química , Ácido Glucurônico/química , Estereoisomerismo
5.
Org Biomol Chem ; 17(12): 3129-3140, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30838361

RESUMO

Colwellia psychrerythraea 34H is a psychrophilic Gram-negative bacterium, able to survive at subzero temperatures by producing a unique capsular polysaccharide (CPS) with anti-freeze properties similar to those of the well-known anti-freeze (glyco)proteins. The tetrasaccharide repeating unit of the CPS - constituted of alternating amino sugars and uronic acid moieties in a glycosaminoglycan-like fashion with an amide-linked threonine (Thr) decoration - was synthesized as an O-n-propyl glycoside. The synthesis faced some challenging features such as building up a crowded [→2)α-d-Galp(1→] moiety as well as differentiating the two uronic units for the regioselective insertion of the Thr amide only on one of them. NMR data for the obtained tetrasaccharide confirmed the structure proposed for the C. psychrerythraea polysaccharide.


Assuntos
Alteromonadaceae/química , Oligossacarídeos/síntese química , Configuração de Carboidratos , Oligossacarídeos/química
6.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766509

RESUMO

Fucosylated chondroitin sulfate (fCS) is a glycosaminoglycan found up to now exclusively in the body wall of sea cucumbers. It shows several interesting activities, with the anticoagulant and antithrombotic as the most attractive ones. Its different mechanism of action on the blood coagulation cascade with respect to heparin and the retention of its activity by oral administration make fCS a very promising anticoagulant drug candidate for heparin replacement. Nonetheless, its typically heterogeneous structure, the detection of some adverse effects and the preference for new drugs not sourced from animal tissues, explain how mandatory is to open an access to safer and less heterogeneous non-natural fCS species. Here we contribute to this aim by investigating a suitable chemical strategy to obtain a regioisomer of the natural fCS polysaccharide, with sulfated l-fucosyl branches placed at position O-6 of N-acetyl-d-galactosamine (GalNAc) units instead of O-3 of d-glucuronic acid (GlcA) ones, as in natural fCSs. This strategy is based on the structural modification of a microbial sourced chondroitin polysaccharide by regioselective insertion of fucosyl branches and sulfate groups on its polymeric structure. A preliminary in vitro evaluation of the anticoagulant activity of three of such semi-synthetic fCS analogues is also reported.


Assuntos
Anticoagulantes/síntese química , Técnicas de Química Sintética/métodos , Sulfatos de Condroitina/síntese química , Pepinos-do-Mar/química , Acetilgalactosamina/química , Animais , Anticoagulantes/farmacologia , Sulfatos de Condroitina/farmacologia , Ensaio de Imunoadsorção Enzimática , Fucose/química , Protrombina/antagonistas & inibidores
8.
Carbohydr Polym ; 283: 119054, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35153009

RESUMO

Sulfated glycosaminoglycan (GAG) analogues derived from plant, algae or microbial sourced polysaccharides are highly interesting in order to gain bioactivities similar to sulfated GAGs but without risks and concerns derived from their typical animal sources. Since the exopolysaccharide (EPS) produced by the bacterium Vibrio diabolicus HE800 strain from deep-sea hydrothermal vents is known to have a GAG-like structure with a linear backbone composed of unsulfated aminosugar and uronic acid monomers, its structural modification through four different semi-synthetic sulfation strategies has been performed. A detailed structural characterization of the six obtained polysaccharides revealed that three different sulfation patterns (per-O-sulfation, a single N-sulfation and a selective primary hydroxyls sulfation) were achieved, with molecular weights ranging from 5 to 40 kDa. A Surface Plasmonic Resonance (SPR) investigation of the affinity between such polysaccharides and a set of growth factors revealed that binding strength is primarily depending on polysaccharide sulfation degree.


Assuntos
Glicosaminoglicanos/química , Polissacarídeos Bacterianos/química , Vibrio , Amino Açúcares/química , Animais , Peptídeos e Proteínas de Sinalização Intercelular/química , Espectroscopia de Ressonância Magnética/métodos , Peso Molecular , Sulfatos/química , Ressonância de Plasmônio de Superfície/métodos , Ácidos Urônicos/química
9.
Carbohydr Polym ; 269: 118324, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294336

RESUMO

Curdlan is a bacterial sourced polysaccharide, consisting of a linear backbone of ß-1 â†’ 3-linked glucose (Glc) units. The high interest in pharmaceutical applications of curdlan and derivatives thereof is fueling the study of multi-step sequences for regioselective modifications of its structure. Here we have developed semi-synthetic sequences based on a regioselective protection-sulfation-deprotection approach, allowing the access to some, new, low molecular weight curdlan polysaccharide derivatives with unprecedented sulfation patterns. Three different semi-synthetic schemes were investigated, all relying upon the installation of a cyclic benzylidene protecting group on Glc O-4,6-diols, followed by either direct sulfation and deprotection, or some additional steps - including a hydrolytic or oxidative cleavage of the benzylidene rings - prior to sulfation and deprotection. The six obtained polysaccharides were subjected to a detailed structural characterization by 2D-NMR analysis, revealing that some of them showed the majority of Glc units along the polymeric backbone decorated by unprecedented sulfation motifs.

10.
Polymers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478164

RESUMO

Controlling chondroitin sulfates (CSs) biological functions to exploit their interesting potential biomedical applications requires a comprehensive understanding of how the specific sulfate distribution along the polysaccharide backbone can impact in their biological activities, a still challenging issue. To this aim, herein, we have applied an "holistic approach" recently developed by us to look globally how a specific sulfate distribution within CS disaccharide epitopes can direct the binding of these polysaccharides to growth factors. To do this, we have analyzed several polysaccharides of marine origin and semi-synthetic polysaccharides, the latter to isolate the structure-activity relationships of their rare, and even unnatural, sulfated disaccharide epitopes. SPR studies revealed that all the tested polysaccharides bind to FGF-2 (with exception of CS-8, CS-12 and CS-13) according to a model in which the CSs first form a weak complex with the protein, which is followed by maturation to tight binding with k D ranging affinities from ~ 1.31 µM to 130 µM for the first step and from ~ 3.88 µM to 1.8 nM for the second one. These binding capacities are, interestingly, related with the surface charge of the 3D-structure that is modulated by the particular sulfate distribution within the disaccharide repeating-units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA