Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 204(5): 1345-1361, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969389

RESUMO

Aggregation of α-synuclein (αSN) is an important histological feature of Parkinson disease. Recent studies showed that the release of misfolded αSN from human and rodent neurons is relevant to the progression and spread of αSN pathology. Little is known, however, about the mechanisms responsible for clearance of extracellular αSN. This study found that human complement receptor (CR) 4 selectively bound fibrillar αSN, but not monomeric species. αSN is an abundant protein in the CNS, which potentially could overwhelm clearance of cytotoxic αSN species. The selectivity of CR4 toward binding fibrillar αSN consequently adds an important αSN receptor function for maintenance of brain homeostasis. Based on the recently solved structures of αSN fibrils and the known ligand preference of CR4, we hypothesize that the parallel monomer stacking in fibrillar αSN creates a known danger-associated molecular pattern of stretches of anionic side chains strongly bound by CR4. Conformational change in the receptor regulated tightly clearance of fibrillar αSN by human monocytes. The induced change coupled concomitantly with phagolysosome formation. Data mining of the brain transcriptome in Parkinson disease patients supported CR4 as an active αSN clearance mechanism in this disease. Our results associate an important part of the innate immune system, namely complement receptors, with the central molecular mechanisms of CNS protein aggregation in neurodegenerative disorders.


Assuntos
Integrina alfaXbeta2 , Macrófagos , Doença de Parkinson , Fagossomos , Agregação Patológica de Proteínas , alfa-Sinucleína , Humanos , Integrina alfaXbeta2/química , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Fagossomos/química , Fagossomos/genética , Fagossomos/imunologia , Fagossomos/patologia , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/imunologia , Agregação Patológica de Proteínas/patologia , Estrutura Quaternária de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/imunologia
2.
FASEB J ; 34(6): 7462-7482, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277854

RESUMO

In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.


Assuntos
Membrana Celular/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Humanos , Mamíferos/metabolismo , Fusão de Membrana/fisiologia
3.
Biochemistry ; 58(50): 5052-5065, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31747254

RESUMO

A hallmark of Parkinson's disease is the presence of Lewy bodies consisting of lipids and proteins, mainly fibrillated α-synuclein (aSN). aSN is an intrinsically disordered protein exerting its physiological role in an ensemble of states, one of which coexists in large assemblies with lipids, recently termed co-structures. Here, we decipher the kinetics of aSN:lipid co-structure formation to decode its mechanism of formation, and we show that the co-structures form with a distinct stoichiometry. Through seeded fibrillation assays, we demonstrate that aSN:lipid co-structures accelerate aSN fibril nucleation compared to lipid vesicles alone. A small-angle X-ray scattering-based model is proposed in which aSN decorates the lipid vesicle surface, yielding properties similar to those of the fibril surface, enhancing fibril nucleation. The delicate balance of aSN structural states close to and on the membrane may under given conditions, e.g., increased local concentrations, be a crucial switching factor between functional and pathological behavior.


Assuntos
Amiloide/química , Metabolismo dos Lipídeos , Lipídeos/química , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína
4.
Biochim Biophys Acta ; 1864(9): 1160-1169, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353564

RESUMO

The presence of Lewy bodies and Lewy neurites is a major pathological hallmark of Parkinson's disease and is hypothesized to be linked to disease development, although this is not yet conclusive. Lewy bodies and Lewy neurites primarily consist of fibrillated α-Synuclein; yet, there is no treatment available targeting stabilization of α-Synuclein in its native state. The aim of the present study was to investigate the inhibitory activity of an ethanolic extract of Geum urbanum against α-Synuclein fibrillation and examine the structural changes of α-Synuclein in the presence of the extract. The anti-fibrillation and anti-aggregation activities of the plant extract were monitored by thioflavin T fibrillation assays and size exclusion chromatography, while structural changes were followed by circular dichroism, Fourier transform infrared spectroscopy, intrinsic fluorescence, small angle X-ray scattering and electron microscopy. Since the extract is a complex mixture, structure-function relationships could not be determined. Under the experimental conditions investigated, Geum urbanum was found to inhibit α-Synuclein fibrillation in a concentration dependent way, and to partly disintegrate preformed α-Synuclein fibrils. Based on the structural changes of α-Synuclein in the presence of extract, we propose that Geum urbanum delays α-Synuclein fibrillation either by reducing the fibrillation ability of one or more of the aggregation prone intermediates or by directing α-Synuclein aggregation towards a non-fibrillar state. However, whether these alterations of the fibrillation pathway lead to less pathogenic species is yet to be determined.


Assuntos
Amiloide/química , Geum/química , Extratos Vegetais/química , Agregados Proteicos , alfa-Sinucleína/química , Amiloide/antagonistas & inibidores , Benzotiazóis , Humanos , Soluções , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Tiazóis , alfa-Sinucleína/antagonistas & inibidores
5.
Adv Exp Med Biol ; 1009: 149-165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218558

RESUMO

Protein fibrillation is associated with a number of fatal amyloid diseases (e.g. Alzheimer's and Parkinson's diseases). From a structural point of view, the aggregation process starts from an ensemble of native states that convert into transiently formed oligomers, higher order assemblies and protofibrils and, finally, fibrils. The different species exist in equilibrium in solution leading to a high degree of sample heterogeneity. It is impossible to physically isolate any single species for structural analysis: separation will alter the equilibrium and potentially cause structural changes.Small angle scattering is an optimal method for structural studies of the fibrillation process in order to further the knowledge of the associated diseases. The recorded scattering data include the scattering contribution of all the species in solution and must be decomposed to enable structural modeling of the individual components involved during the fibrillation, notably without physical separation of the species. In this chapter we explain how to optimize a small angle scattering analysis of the fibrillation process and the basic principles behind analysis of the data. We include several practical tips and highlight existing reports, exemplifying the wealth of information that can be derived from the method.


Assuntos
Amiloide/ultraestrutura , Coleta de Dados/métodos , Espalhamento a Baixo Ângulo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Amiloide/química , Amiloidose/metabolismo , Amiloidose/fisiopatologia , Coleta de Dados/estatística & dados numéricos , Interpretação Estatística de Dados , Humanos , Modelos Moleculares , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Conformação Proteica , Software , Difração de Raios X
6.
Arch Biochem Biophys ; 602: 69-79, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945933

RESUMO

Solution small angle X-ray scattering from biological macromolecules (BioSAXS) plays an increasingly important role in biostructural research. The analysis of complex protein mixtures, dynamic equilibriums, intrinsic disorder and evolving structural processes is facilitated by SAXS data, either in stand-alone applications, or with SAXS taking a prominent role in hybrid biostructural analysis. This is not the least due to the significant advances in both hardware and software that have taken place in particular at the large-scale facilities. Here, recent developments and the future potential of BioSAXS are reviewed, exemplified by numerous examples of elegant applications to challenging systems.


Assuntos
Modelos Moleculares , Proteínas/química , Proteínas/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Simulação por Computador , Conformação Proteica
7.
Pharm Res ; 33(3): 716-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26563206

RESUMO

PURPOSE: Aggregation aspects of therapeutic monoclonal antibodies (mAbs) are of common concern to the pharmaceutical industry. Low pH treatment is applied during affinity purification and to inactivate endogenous retroviruses, directing interest to the mechanisms of acid-induced antibody aggregation. METHODS: We characterized the oligomerization kinetics at pH 3.3, as well as the reversibility upon neutralization, of three model mAbs with identical variable regions, representative of IgG1, IgG2 and IgG4 respectively. We applied size-exclusion high performance liquid chromatography and orthogonal analytical methods, including small-angle X-ray scattering and dynamic light scattering and supplemented the experimental data with crystal structure-based spatial aggregation propensity (SAP) calculations. RESULTS: We revealed distinct solution behaviors between the three mAb models: At acidic pH IgG1 retained monomeric, whereas IgG2 and IgG4 exhibited two-phase oligomerization processes. After neutralization, IgG2 oligomers partially reverted to the monomeric state, while on the contrary, IgG4 oligomers tended to aggregate. Subclass-specific aggregation-prone motifs on the Fc fragments were identified, which may lead to two distinct pathways of reversible and irreversible aggregation, respectively. CONCLUSIONS: We conclude that subtle variations in mAb sequence greatly affect responses towards low-pH incubation and subsequent neutralization, and demonstrate how orthogonal biophysical methods distinguish between reversible and irreversible mAb aggregation pathways at early stages of acidic treatment.


Assuntos
Ácidos/química , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Cinética , Multimerização Proteica , Soluções/química
8.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 882-95, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849399

RESUMO

Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a ß-sheet arrangement reminiscent of the ß-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.


Assuntos
Amiloide/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Fatores de Terminação de Peptídeos/ultraestrutura , Príons/ultraestrutura , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Proc Natl Acad Sci U S A ; 109(9): 3317-22, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22343531

RESUMO

Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4(IETDV)(2) (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Sítios de Ligação , Barreira Hematoencefálica , Cristalografia por Raios X , Proteína 4 Homóloga a Disks-Large , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Guanilato Quinases/antagonistas & inibidores , Humanos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacologia , Ressonância Magnética Nuclear Biomolecular , Domínios PDZ/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Equilíbrio Postural , Conformação Proteica , Transtornos de Sensação/etiologia , Transtornos de Sensação/prevenção & controle
10.
Biomacromolecules ; 15(10): 3643-54, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25210839

RESUMO

Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome morphology and stability upon protein addition and reveal that membrane disruption mediated by amyloidogenic αSN is associated with dehydration of anionic lipid membranes and stimulation of protein secondary structure. As a result of membrane fragmentation, soluble αSN:-lipid coaggregates are formed, hence, suggesting a novel molecular mechanism behind PD amyloid cytotoxicity.


Assuntos
Bicamadas Lipídicas/química , Proteínas/química , alfa-Sinucleína/química , Amiloide/metabolismo , Membrana Celular/metabolismo , Dicroísmo Circular , Corpos de Lewy/metabolismo , Bicamadas Lipídicas/metabolismo , Estrutura Secundária de Proteína , Proteínas/metabolismo , Espalhamento de Radiação , Raios X , alfa-Sinucleína/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(8): 3246-51, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21300904

RESUMO

One of the major hallmarks of Parkinson disease is aggregation of the protein α-synuclein (αSN). Aggregate cytotoxicity has been linked to an oligomeric species formed at early stages in the aggregation process. Here we follow the fibrillation process of αSN in solution over time using small angle X-ray scattering and resolve four major coexisting species in the fibrillation process, namely monomer, dimer, fibril and an oligomer. By ab initio modeling to fit the data, we obtain a low-resolution structure of a symmetrical and slender αSN fibril in solution, consisting of a repeating unit with a maximal distance of 900 Å and a diameter of ∼180 Å. The same approach shows the oligomer to be shaped like a wreath, with a central channel and with dimensions corresponding to the width of the fibril. The structure, accumulation and decay of this oligomer is consistent with an on-pathway role for the oligomer in the fibrillation process. We propose an oligomer-driven αSN fibril formation mechanism, where the fibril is built from the oligomers. The wreath-shaped structure of the oligomer highlights its potential cytotoxicity by simple membrane permeabilization. This is confirmed by the ability of the purified oligomer to disrupt liposomes. Our results provide the first structural description in solution of a potentially cytotoxic oligomer, which accumulates during the fibrillation of αSN.


Assuntos
Multimerização Proteica , alfa-Sinucleína/química , Permeabilidade da Membrana Celular , Humanos , Lipossomos/metabolismo , Doença de Parkinson/patologia , Conformação Proteica , Difração de Raios X , alfa-Sinucleína/toxicidade
12.
Biochemistry ; 52(2): 282-94, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23256662

RESUMO

Lys(B29)(N(ε)ω-carboxyheptadecanoyl) des(B30) human insulin is an insulin analogue belonging to a class of analogues designed to form soluble depots in subcutis by self-association, aiming at a protracted action. On the basis of small angle X-ray scattering (SAXS) supplemented by a range of biophysical and structural methods (field flow fractionation, dynamic and multiangle light scattering, circular dichroism, size exclusion chromatography, and crystallography), we propose a mechanism for the self-association expected to occur upon subcutaneous injection of this insulin analogue. SAXS data provide evidence of the in solution structure of the self-associated oligomer, which is a long straight rod composed of "tense" state insulin hexamers (T(6)-hexamers) as the smallest repeating unit. The smallest oligomer building block in the process is a T(6)T(6)-dihexamer. This tense dihexamer is formed by the allosteric change of the initial equilibrium between a proposed "relaxed" state R(6)-hexamer and an R(3)T(3)T(3)R(3)-dihexamer. The allosteric change from relaxed to tense is triggered by removal of phenol, mimicking subcutaneous injection. The data hence provide the first unequivocal evidence of the mechanism of self-association for this type of insulin analogue.


Assuntos
Insulina/análogos & derivados , Cristalografia por Raios X , Humanos , Insulina/química , Modelos Moleculares , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Methods Enzymol ; 678: 377-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641215

RESUMO

During the fibrillation process amyloid proteins undergo structural changes at very different length and time scales. Small angle X-ray scattering (SAXS) is a method that is uniquely suitable for the structural analysis of this process. Careful measures must, however, be taken both in the sample preparation, data collection and data analysis procedures to ensure proper data quality, coverage of the process and reliable interpretation. With this chapter, we provide many details about the data analysis of such developing systems. The recommendations are based on our own experience with analysis of data from several amyloid and amyloid-like proteins, with data decomposition being a central point in the procedure. We focus on two alternative approaches, one being a laborious, hands-on, iterative approach, the other being more automated, applying a chemometrics based software, developed for the purpose. Both methods can equally well be applied to other developing mixtures, but specific recommendations for amyloid samples are emphasized in this chapter.


Assuntos
Amiloide , Software , Difração de Raios X , Espalhamento a Baixo Ângulo , Amiloide/química
14.
Methods Mol Biol ; 2551: 321-344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310213

RESUMO

Protein aggregates, hereunder amyloid fibrils, can undergo a maturation process, whereby early formed aggregates undergo a structural and physicochemical transition leading to more mature species. In the case of amyloid-related diseases, such maturation confers distinctive biological properties of the aggregates, which may account for a range of diverse pathological subtypes. Here, we present a protocol for the preparation of α-synuclein amyloid fibrils differing in the level of their maturation. We utilize widely accessible biophysical techniques to characterize the structure and morphology and a simple thermal treatment procedure to test their thermodynamic stability. Their biological properties are probed by means of binding to native plasma membrane sheets originating from mammalian cell lines.


Assuntos
Amiloidose , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/metabolismo , Amiloide/química , Agregados Proteicos , Biofísica , Amiloidose/metabolismo , Mamíferos/metabolismo
15.
Pharm Res ; 29(8): 2225-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22477029

RESUMO

PURPOSE: Concentrated protein formulations are strongly influenced by protein-protein interactions. These can be probed at low protein concentration by e.g. virial coefficients. It was recently suggested that interactions are attractive at short distances and repulsive at longer distances. Measurements at low concentrations mainly sample longer distances, hence may not predict high concentration behavior. Here we demonstrate that small angle X-ray scattering (SAXS) measurements simultaneously collect information on interactions at short and long distances. METHODS: IgG2 antibody samples at concentrations up to 122 mg/ml are analyzed using SAXS and compared to Circular Dichroism (CD), Fluorescence, Size Exclusion Chromatography (SEC) and Dynamic Light Scattering (DLS) analysis. RESULTS: DLS and SEC analyses reveal attraction between antibodies at high concentrations. SAXS data analysis provides an elaborate understanding and shows both attractive and repulsive forces. The protein-protein interactions are strongly affected by excipients. No change in the solution state of IgG2 is observed at pH 4-8, while samples at pH 3 exhibit heavy oligomerization. The solution conformation of the examined IgG2 derived from SAXS data is a T-shape. CONCLUSION: SAXS analysis resolves simultaneous attractive and repulsive interactions, and details the effect of excipients on the interactions, while providing three-dimensional structural information from low-concentration samples.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Anticorpos Monoclonais/imunologia , Cromatografia em Gel , Dicroísmo Circular , Receptores ErbB/imunologia , Humanos , Imunoglobulina G/imunologia , Modelos Moleculares , Panitumumabe , Conformação Proteica , Espalhamento a Baixo Ângulo , Soluções , Espectrometria de Fluorescência , Difração de Raios X
16.
Methods Enzymol ; 677: 291-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36410953

RESUMO

Protein fibrillation associates with several chronic, progressive, and fatal disorders, counting well-known maladies as Parkinson's, Alzheimer's, and Huntington's disease. The fibrillation process includes structural changes and aggregation of the disease specific protein, resulting in a mixture of different structural states covering nm to µm scale in varying volume fractions. SAXS uniquely enables structural investigations of such evolving mixtures but requires that the underlying main data collection experiment is carefully prepared. In this chapter, we provide very detailed instructions on how to plan and perform such protein fibrillation experiments, both before and during the SAXS data collection. The chapter is based on our own experience mainly using high-end synchrotron radiation facilities for the data collection but can equally well be applied on state-of-the-art laboratory based SAXS instruments. We accumulate the know-how from our group, established via the study of different amyloid-like proteins, applying fibrillation either in batch or in plate reader, with or without known process quenching conditions.


Assuntos
Proteínas , Síncrotrons , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Coleta de Dados
17.
Structure ; 29(9): 1074-1090.e4, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33862013

RESUMO

Transient biomolecular interactions play crucial roles in many cellular signaling and regulation processes. However, deciphering the structure of these assemblies is challenging owing to the difficulties in isolating complexes from the individual partners. The additive nature of small-angle X-ray scattering (SAXS) data allows for probing the species present in these mixtures, but decomposition into structural and thermodynamic information is difficult. We present a chemometric approach enabling the decomposition of titration SAXS data into species-specific information. Using extensive synthetic SAXS data, we demonstrate that robust decomposition can be achieved for titrations with a maximum fraction of complex of 0.5 that can be extended to 0.3 when two orthogonal titrations are simultaneously analyzed. The effect of the structural features, titration points, relative concentrations, and noise are thoroughly analyzed. The validation of the strategy with experimental data highlights the power of the approach to provide unique insights into this family of biomolecular assemblies.


Assuntos
Multimerização Proteica , Espalhamento a Baixo Ângulo , Termodinâmica , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Software , Difração de Raios X
18.
Biochemistry ; 49(45): 9739-45, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20873866

RESUMO

Blood coagulation factor VIIa (FVIIa) is used in the treatment of replacement therapy resistant hemophilia patients, and FVIIa is normally activated upon complex formation with tissue factor (TF), potentially in context with structural rearrangements. The solution behavior of uncomplexed FVIIa is important for understanding the mechanism of activation and for the stability and activity of the pharmaceutical product. However, crystal structures of FVIIa in complex with TF and of truncated free FVIIa reveal different overall conformations while previous small-angle scattering studies suggest FVIIa always to be fully extended in solution. Here, small-angle X-ray scattering analysis of multiple forms of FVIIa and TF under several experimental conditions elaborate extensively on the understanding of the solution behavior of FVIIa. We reveal significant FVIIa domain flexibility in solution, whereas TF has a well-defined conformation. Unspecific formation of dimers of FVIIa is also observed and varies with experimental conditions. In particular, active site-inhibited FVIIa displays a distinct solution behavior different from that of uninhibited FVIIa, which may reflect structural rearrangements causing resistance to activation, thereby emphasizing the connection between the distribution of different conformations of FVII and the mechanism of activation.


Assuntos
Fator VIIa/química , Cristalização , Fator VIIa/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo , Tromboplastina/química , Tromboplastina/metabolismo , Difração de Raios X/métodos
19.
J Synchrotron Radiat ; 17(6): 769-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20975222

RESUMO

Small-angle X-ray scattering (SAXS) is a powerful technique to structurally characterize biological macromolecules in solution. Heterogeneous solutions are inherently challenging to study. However, since SAXS data from ideal solutions are additive, with careful computational analysis it may be possible to separate contributions from individual species present in solution. Hence, time-resolved SAXS (TR-SAXS) data of processes in development can be analyzed. Many reported TR-SAXS results are initialized by a sudden change in buffer conditions facilitated by rapid mixing combined with either continuous or stopped flow. In this paper a method for obtaining TR-SAXS data from systems where the reaction is triggered by removal of a species is presented. This method is based on fast buffer exchange over a short desalting column facilitated by an online HPLC (high-performance liquid chromatography) connected to the SAXS sample cell. The sample is stopped in the sample cell and the evolving reaction is followed. In this specific system the removal of phenol initiates a self-association process of long-acting insulin analogues. For this experiment, data were collected in time series while varying concentrations. The method can be generally applied to other systems where removal of a species or other changes in experimental conditions trigger a process.


Assuntos
Insulina de Ação Prolongada/química , Difração de Raios X/métodos , Soluções Tampão , Cromatografia Líquida de Alta Pressão , Microfluídica/instrumentação , Conformação Proteica , Espalhamento a Baixo Ângulo
20.
PLoS Biol ; 5(5): e134, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17472440

RESUMO

Although amyloid fibrillation is generally believed to be a nucleation-dependent process, the nuclei are largely structurally uncharacterized. This is in part due to the inherent experimental challenge associated with structural descriptions of individual components in a dynamic multi-component equilibrium. There are indications that oligomeric aggregated precursors of fibrillation, and not mature fibrils, are the main cause of cytotoxicity in amyloid disease. This further emphasizes the importance of characterizing early fibrillation events. Here we present a kinetic x-ray solution scattering study of insulin fibrillation, revealing three major components: insulin monomers, mature fibrils, and an oligomeric species. Low-resolution three-dimensional structures are determined for the fibril repeating unit and for the oligomer, the latter being a helical unit composed of five to six insulin monomers. This helical oligomer is likely to be a structural nucleus, which accumulates above the supercritical concentration used in our experiments. The growth rate of the fibrils is proportional to the amount of the helical oligomer present in solution, suggesting that these oligomers elongate the fibrils. Hence, the structural nucleus and elongating unit in insulin amyloid fibrillation may be the same structural component above supercritical concentrations. A novel elongation pathway of insulin amyloid fibrils is proposed, based on the shape and size of the fibrillation precursor. The distinct helical oligomer described in this study defines a conceptually new basis of structure-based drug design against amyloid diseases.


Assuntos
Amiloide/química , Insulina/química , Modelos Moleculares , Conformação Proteica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA