Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell Proteomics ; 21(3): 100208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091090

RESUMO

In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.


Assuntos
Proteômica , Trypanosoma cruzi , Transporte Ativo do Núcleo Celular , RNA , Splicing de RNA , Transporte de RNA
2.
BMC Genomics ; 20(1): 378, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088352

RESUMO

BACKGROUND: Banana is one of the most important crops in tropical and sub-tropical regions. To meet the demands of international markets, banana plantations require high amounts of chemical fertilizers which translate into high farming costs and are hazardous to the environment when used excessively. Beneficial free-living soil bacteria that colonize the rhizosphere are known as plant growth-promoting rhizobacteria (PGPR). PGPR affect plant growth in direct or indirect ways and hold great promise for sustainable agriculture. RESULTS: PGPR of the genera Bacillus and Pseudomonas in banana cv. Williams were evaluated. These plants were produced through in vitro culture and inoculated individually with two rhizobacteria, Bacillus amyloliquefaciens strain Bs006 and Pseudomonas fluorescens strain Ps006. Control plants without microbial inoculum were also evaluated. These plants were kept in a controlled climate growth room with conditions required to favor plant-microorganism interactions. These interactions were evaluated at 1-, 48- and 96-h using transcriptome sequencing after inoculation to establish differentially expressed genes (DEGs) in plants elicited by the interaction with the two rhizobacteria. Additionally, droplet digital PCR was performed at 1, 48, 96 h, and also at 15 and 30 days to validate the expression patterns of selected DEGs. The banana cv. Williams transcriptome reported differential expression in a large number of genes of which 22 were experimentally validated. Genes validated experimentally correspond to growth promotion and regulation of specific functions (flowering, photosynthesis, glucose catabolism and root growth) as well as plant defense genes. This study focused on the analysis of 18 genes involved in growth promotion, defense and response to biotic or abiotic stress. CONCLUSIONS: Differences in banana gene expression profiles in response to the rhizobacteria evaluated here (Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006) are influenced by separate bacterial colonization processes and levels that stimulate distinct groups of genes at various points in time.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Perfilação da Expressão Gênica/métodos , Musa/crescimento & desenvolvimento , Proteínas de Plantas/genética , Pseudomonas fluorescens/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Musa/genética , Musa/microbiologia , Análise de Sequência de RNA , Microbiologia do Solo , Estresse Fisiológico
3.
RNA Biol ; 15(8): 1106-1118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30146924

RESUMO

Gene expression regulation in trypanosomes differs from other eukaryotes due to absence of transcriptional regulation for most of their genes. RNA-binding proteins (RBPs) associate with mRNAs and other regulatory proteins to form ribonucleoprotein complexes (mRNPs), which play a major role in post-transcriptional regulation. Here, we show that RBP9 is a cytoplasmic RBP in Trypanosoma cruzi with one RNA-recognition motif (RRM). The RBP9 sedimentation profile in a sucrose gradient indicated its presence in cytoplasmic translational complexes, suggesting its involvement in translation regulation. Taking this result as a motivation, we used shotgun proteomics and RNA-seq approaches to assess the core of the RBP9-mRNP complex. In epimastigotes in exponential growth, the complex was composed mostly by RBPs involved in RNA metabolism, such as ZC3H39, UBP1/2, NRBD1, and ALBA3/4. When parasites were subjected to nutritional stress, our analysis identified regulatory RBPs and the translation initiation factors eIF4E5, eIF4G5, eIF4G1, and eIF4G4. The RNA-seq results showed that RBP9-mRNP complex regulates transcripts encoding some RBPs - e.g. RBP5, RBP6, and RBP10 -, and proteins involved in metabolic processes. Therefore, we argue that RBP9 is part of cytoplasmic mRNPs complexes associated with mRNA metabolism and translation regulation in T. cruzi.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Homologia de Sequência , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
4.
Mol Microbiol ; 102(4): 672-689, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27542978

RESUMO

Nucleo-cytoplasmic RNA export is an essential post-transcriptional step to control gene expression in eukaryotic cells and is poorly understood in apicomplexan parasites. With the exception of UAP56, a component of TREX (Transcription Export) complex, other components of mRNA export machinery are not well conserved in divergent supergroups. Here, we use Toxoplasma gondii as a model system to functionally characterize TgUAP56 and its potential interaction factors. We demonstrate that TgUAP56 is crucial for mRNA export and that functional interference leads to significant accumulation of mRNA in the nucleus. It was necessary to employ bioinformatics and phylogenetic analysis to identify orthologs related to mRNA export, which show a remarkable low level of conservation in T. gondii. We adapted a conditional Cas9/CRISPR system to carry out a genetic screen to verify if these factors were involved in mRNA export in T. gondii. Only the disruption of TgRRM_1330 caused accumulation of mRNA in the nucleus as found with TgUAP56. This protein is potentially a divergent partner of TgUAP56, and provides insight into a divergent mRNA export pathway in apicomplexans.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Biologia Computacional/métodos , Humanos , Proteínas Nucleares/genética , Transporte de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Toxoplasma/enzimologia , Fatores de Transcrição/metabolismo
5.
Mol Ther Nucleic Acids ; 35(2): 102202, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38846999

RESUMO

Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.

6.
Oncotarget ; 12(26): 2500-2513, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34966482

RESUMO

The rising incidence and mortality of endometrial cancer (EC) in the United States calls for an improved understanding of the disease's progression. Current methodologies for diagnosis and treatment rely on the use of cell lines as models for tumor biology. However, due to inherent heterogeneity and differential growing environments between cell lines and tumors, these comparative studies have found little parallels in molecular signatures. As a consequence, the development and discovery of preclinical models and reliable drug targets are delayed. In this study, we established transcriptome parallels between cell lines and tumors from The Cancer Genome Atlas (TCGA) with the use of optimized normalization methods. We identified genes and signaling pathways associated with regulating the transformation and progression of EC. Specifically, the LXR/RXR activation, neuroprotective role for THOP1 in Alzheimer's disease, and glutamate receptor signaling pathways were observed to be mostly downregulated in advanced cancer stage. While some of these highlighted markers and signaling pathways are commonly found in the central nervous system (CNS), our results suggest a novel function of these genes in the periphery. Finally, our study underscores the value of implementing appropriate normalization methods in comparative studies to improve the identification of accurate and reliable markers.

7.
Mol Genet Genomics ; 282(4): 351-62, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19585148

RESUMO

LTR retrotransposons are the most abundant transposable elements in Drosophila and are believed to have contributed significantly to genome evolution. Different reports have shown that many LTR retrotransposon families in Drosophila melanogaster emerged from recent evolutionary episodes of transpositional activity. To contribute to the knowledge of the evolutionary history of Drosophila LTR retrotransposons and the mechanisms that control their abundance, distribution and diversity, we conducted analyses of four related families of LTR retrotransposons, 297, 17.6, rover and Tom. Our results show that these elements seem to be restricted to species from the D. melanogaster group, except for 17.6, which is also present in D. virilis and D. mojavensis. Genetic divergences and phylogenetic analyses of a 1-kb fragment region of the pol gene illustrate that the evolutionary dynamics of Tom, 297, 17.6 and rover retrotransposons are similar in several aspects, such as low codon bias, the action of purifying selection and phylogenies that are incongruent with those of the host species. We found an extremely complex association among the retrotransposon sequences, indicating that different processes shaped the evolutionary history of these elements, and we detected a very high number of possible horizontal transfer events, corroborating the importance of lateral transmission in the evolution and maintenance of LTR retrotransposons.


Assuntos
Drosophilidae/genética , Evolução Molecular , Retroelementos/genética , Animais , Variação Genética/fisiologia , Filogenia , Seleção Genética , Especificidade da Espécie , Sequências Repetidas Terminais/genética
8.
Front Microbiol ; 10: 1669, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396186

RESUMO

Multidrug-resistant (MDR) Klebsiella pneumoniae (Kp) is a major bacterial pathogen responsible for hospital outbreaks worldwide, mainly via the spread of high-risk clones and epidemic resistance plasmids. In this study, we evaluated the molecular epidemiology and ß-lactam resistance mechanisms of MDR-Kp strains isolated in a Brazilian academic care hospital. We used whole-genome sequencing to study drug resistance mechanisms and their relationships with a K. pneumoniae carbapenemase-producing (KPC) Kp outbreak. Forty-three Kp strains were collected between 2003 and 2012. Antimicrobial susceptibility testing was performed for 15 antimicrobial agents, and polymerase chain reaction (PCR) was used to detect 32 resistance genes. Mutations in ompk35, ompk36, and ompk37 were evaluated by PCR and DNA sequencing. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were carried out to differentiate the strains. Based on distinct epidemiological periods, six Kp strains were subjected to whole-genome sequencing. ß-lactamase coding genes were widely distributed among isolates. Almost all isolates had mutations in porin genes, particularly ompk35. The presence of bla KPC promoted a very high increase in carbapenem minimum inhibitory concentration only when ompk35 and ompk36 were interrupted by insertion sequences. A major cluster was identified by PFGE analysis and all isolates from this cluster belonged to clonal group (CG) 258. We have also identified a large repertoire of resistance genes in the sequenced isolates. A bla KPC-2-bearing plasmid (pUFPRA2) was also identified, which was very similar to a plasmid previously described in the first Brazilian KPC-Kp (2005). We found high-risk clones (CG258) and an epidemic resistance plasmid throughout the duration of the study (2003 to 2012), emphasizing a persistent presence of MDR-Kp strains in the hospital setting. Finally, we found that horizontal transfer of resistance genes between clones may have played a key role in the evolution of the outbreak.

9.
J Hum Lact ; 32(3): 446-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27165765

RESUMO

BACKGROUND: Milk safety is an important concern in neonatal units and human milk banks. Therefore, evidence-based recommendations regarding raw milk handling and storage are needed to safely promote supplying hospitalized infants with their mother's own milk. OBJECTIVES: To evaluate raw human milk storage methods according to Brazilian milk management regulations by investigating the effects of refrigeration (5°C) for 12 hours and freezing (-20°C) for 15 days on the acidity and energy content in a large number of raw milk samples. METHODS: Expressed milk samples from 100 distinct donors were collected in glass bottles. Each sample was separated into 3 equal portions that were analyzed at room temperature and after either 12 hours of refrigeration or 15 days of freezing. Milk acidity and energy content were determined by Dornic titration and creamatocrit technique, respectively. RESULTS: All samples showed Dornic acidity values within the established acceptable limit (≤ 8°D), as required by Brazilian regulations. In addition, energy content did not significantly differ among fresh, refrigerated and frozen milk samples (median of ~50 kcal/100 mL for each). CONCLUSION: Most samples tested (> 80%) were considered top quality milk (< 4°D) based on acidity values, and milk energy content was preserved after storage. We conclude that the storage methods required by Brazilian regulations are suitable to ensure milk safety and energy content of stored milk when supplied to neonates.


Assuntos
Criopreservação , Regulamentação Governamental , Unidades de Terapia Intensiva Neonatal , Bancos de Leite Humano/legislação & jurisprudência , Leite Humano/química , Refrigeração , Manejo de Espécimes/métodos , Adulto , Brasil , Extração de Leite , Humanos , Recém-Nascido , Bancos de Leite Humano/normas , Manejo de Espécimes/normas
10.
FEBS J ; 282(17): 3395-3411, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084810

RESUMO

Identification of essential genes is critical to understanding the physiology of a species, proposing novel drug targets and uncovering minimal gene sets required for life. Although essential gene sets of several organisms have been determined using large-scale mutagenesis techniques, systematic studies addressing their conservation, genomic context and functions remain scant. Here we integrate 17 essential gene sets from genome-wide in vitro screenings and three gene collections required for growth in vivo, encompassing 15 Bacteria and one Archaea. We refine and generalize important theories proposed using Escherichia coli. Essential genes are typically monogenic and more conserved than nonessential genes. Genes required in vivo are less conserved than those essential in vitro, suggesting that more divergent strategies are deployed when the organism is stressed by the host immune system and unstable nutrient availability. We identified essential analogous pathways that would probably be missed by orthology-based essentiality prediction strategies. For example, Streptococcus sanguinis carries horizontally transferred isoprenoid biosynthesis genes that are widespread in Archaea. Genes specifically essential in Mycobacterium tuberculosis and Burkholderia pseudomallei are reported as potential drug targets. Moreover, essential genes are not only preferentially located in operons, but also occupy the first position therein, supporting the influence of their regulatory regions in driving transcription of whole operons. Finally, these important genomic features are shared between Bacteria and at least one Archaea, suggesting that high order properties of gene essentiality and genome architecture were probably present in the last universal common ancestor or evolved independently in the prokaryotic domains.


Assuntos
Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genoma Arqueal , Genoma Bacteriano , Archaea/genética , Evolução Biológica , Burkholderia pseudomallei/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Mycobacterium tuberculosis/genética , Streptococcus/genética
11.
PLoS One ; 9(11): e112654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393538

RESUMO

Carica papaya (papaya) is an economically important tropical fruit. Molecular marker-assisted selection is an inexpensive and reliable tool that has been widely used to improve fruit quality traits and resistance against diseases. In the present study we report the development and validation of an atlas of papaya simple sequence repeat (SSR) markers. We integrated gene predictions and functional annotations to provide a gene-centered perspective for marker-assisted selection studies. Our atlas comprises 160,318 SSRs, from which 21,231 were located in genic regions (i.e. inside exons, exon-intron junctions or introns). A total of 116,453 (72.6%) of all identified repeats were successfully mapped to one of the nine papaya linkage groups. Primer pairs were designed for markers from 9,594 genes (34.5% of the papaya gene complement). Using papaya-tomato orthology assessments, we assembled a list of 300 genes (comprising 785 SSRs) potentially involved in fruit ripening. We validated our atlas by screening 73 SSR markers (including 25 fruit ripening genes), achieving 100% amplification rate and uncovering 26% polymorphism rate between the parental genotypes (Sekati and JS12). The SSR atlas presented here is the first comprehensive gene-centered collection of annotated and genome positioned papaya SSRs. These features combined with thousands of high-quality primer pairs make the atlas an important resource for the papaya research community.


Assuntos
Carica/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Repetições de Microssatélites , Atlas como Assunto , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genótipo , Polimorfismo Genético , Seleção Genética
12.
PLoS One ; 9(10): e109521, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313564

RESUMO

Gene expression in trypanosomes is controlled mostly by post-transcriptional pathways. Little is known about the components of mRNA nucleocytoplasmic export routes in these parasites. Comparative genomics has shown that the mRNA transport pathway is the least conserved pathway among eukaryotes. Nonetheless, we identified a RNA helicase (Hel45) that is conserved across eukaryotes and similar to shuttling proteins involved in mRNA export. We used in silico analysis to predict the structure of Trypanosoma cruzi Hel45, including the N-terminal domain and the C-terminal domain, and our findings suggest that this RNA helicase can form complexes with mRNA. Hel45 was present in both nucleus and cytoplasm. Electron microscopy showed that Hel45 is clustered close to the cytoplasmic side of nuclear pore complexes, and is also present in the nucleus where it is associated with peripheral compact chromatin. Deletion of a predicted Nuclear Export Signal motif led to the accumulation of Hel45ΔNES in the nucleus, indicating that Hel45 shuttles between the nucleus and the cytoplasm. This transport was dependent on active transcription but did not depend on the exportin Crm1. Knockdown of Mex67 in T. brucei caused the nuclear accumulation of the T. brucei ortholog of Hel45. Indeed, Hel45 is present in mRNA ribonucleoprotein complexes that are not associated with polysomes. It is still necessary to confirm the precise function of Hel45. However, this RNA helicase is associated with mRNA metabolism and its nucleocytoplasmic shuttling is dependent on an mRNA export route involving Mex67 receptor.


Assuntos
Proteínas de Protozoários/metabolismo , RNA Helicases/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Cultura Axênica , Domínio Catalítico , Núcleo Celular/enzimologia , Sequência Conservada , Citoplasma/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Poro Nuclear/enzimologia , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , RNA Helicases/química , RNA Helicases/genética , Transporte de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA