Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Environ Res ; 186: 105918, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791539

RESUMO

Amphipods are one of the dominant epifaunal groups in seagrass meadows. However, our understanding of the biogeographical patterns in the distribution of these small crustaceans is limited. In this study, we investigated such patterns and the potential drivers in twelve Cymodocea nodosa meadows within four distinctive biogeographical areas across 2000 Km and 13° of latitude in two ocean basins (Mediterranean Sea and Atlantic Ocean). We found that species abundances in the assemblage of seagrass-associated amphipods differed among areas following a pattern largely explained by seagrass leaf area and epiphyte biomass, while the variation pattern in species presence/absence was determined by seagrass density and epiphyte biomass. Seagrass leaf area was also the most important determinant of greater amphipod total density and species richness, while amphipod density also increased with algal cover. Overall, our results evidenced that biogeographical patterns of variation in amphipod assemblages are mainly influenced by components of the habitat structure, which covary with environmental conditions, finding that structurally more complex meadows harboring higher abundance and richness of amphipods associated.


Assuntos
Alismatales , Anfípodes , Animais , Ecossistema , Biomassa , Mar Mediterrâneo
2.
Sci Total Environ ; 758: 143756, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333301

RESUMO

Despite the crucial role of herbivory in shaping community assembly, our understanding on biogeographical patterns of herbivory on seagrasses is limited compared to that on terrestrial plants. In particular, the drivers of such patterns remain largely unexplored. Here, we used a comparative-experimental approach in Cymodocea nodosa meadows, across all possible climate types within the seagrass distribution, 2000 km and 13° of latitude in two ocean basins, to investigate biogeographical variation in seagrass herbivory intensity and their drivers during July 2014. Particularly, the density and richness of herbivores and their food resources, seagrass size, carbon and nitrogen content, as well as latitude, sea surface temperature, salinity, chlorophyll, and sediment grain size, were tested as potential drivers. We found that shallow meadows can be subjected to intense herbivory, with variation in herbivory largely explained by fish density, seagrass size, and annual sea temperature range. The herbivorous fish density was the most important determinant of such variation, with the dominant seagrass consumer, the fish Sarpa salpa, absent at meadows from regions with low herbivory. In temperate regions where herbivorous fish are present, annual temperature ranges drive an intense summer herbivory, which is likely mediated not only by increased herbivore metabolic demands at higher temperatures, but also by higher fish densities. Invertebrate grazing (mainly by sea urchins, isopods, amphipods, and/or gastropods) was the dominant leaf herbivory in some temperate meadows, with grazing variation mainly influenced by seagrass shoot size. At the subtropical region (under reduced annual temperature range), lower shoot densities and seagrass nitrogen contents contributed to explain the almost null herbivory. We evidenced the combined influence of drivers acting at geographic (region) and local (meadow) scales, the understanding of which is critical for a clear prediction of variation in seagrass herbivory intensity across biogeographical regions.


Assuntos
Alismatales , Perciformes , Animais , Ecossistema , Herbivoria , Invertebrados , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA