Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 116(1-2): 80-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25971245

RESUMO

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


Assuntos
Terapia Genética , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/uso terapêutico , Adenoviridae/genética , Estruturas Animais/patologia , Animais , Gatos , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Mucopolissacaridoses/terapia , Fenótipo , Doença de Sandhoff/fisiopatologia , Doença de Sandhoff/urina
2.
Adv Healthc Mater ; 11(7): e2101263, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34519442

RESUMO

Since the seminal work of Wichterle in 1965 describing the first soft contact lenses and their potential for ocular drug delivery, the field has yet to realize his vision. Maintaining all lens commercial properties combined with a mechanism for controlled drug release of therapeutically relevant concentrations for duration of wear is a major challenge. Here, successful in vivo week-long sustained release of a small molecular weight therapeutic in rabbits from extended-wear silicone hydrogel contact lenses meeting all commercial specifications by utilizing a novel macromolecular memory strategy is reported for the first time. Lens-treated eyes show a continuous, therapeutically relevant bromfenac tear concentration of 256.4 ± 23.1 µg mL-1 for 8 days. Bromday (bromfenac ophthalmic solution, 0.09%, Bausch+Lomb) topical drops exhibit a quick peak concentration of 269.3 ± 85.7 µg mL-1 and 100 min duration. Bioavailability (AUC0-8days ) and mean residence time of lenses are 26 and 155 times higher than drops, respectively. Lenses are safe, well tolerated, and no corneal histological differences are observed. This work highlights the enormous potential of drug releasing lenses as a platform strategy, and offers a new dropless clinical strategy for post-cataract, uveitis, post-LASIK, and corneal abrasion treatment.


Assuntos
Lentes de Contato de Uso Prolongado , Lentes de Contato Hidrofílicas , Animais , Córnea , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Coelhos , Silicones
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA