Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(5): 3950-3958, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648356

RESUMO

According to the classical nucleation theory, the presence of solid particles in a liquid should facilitate its heterogeneous nucleation upon supercooling. Here, we have analysed the behaviour of aqueous dispersions of detonation diamond nanoparticles (DND) with different signs of the surface charge in supercooled conditions and the frozen state. The behaviours of the diamond nanoparticles with a typical size of 4.5 nm were compared with each other and with deionized water in ice nucleation and ice shear experiments. The presented experimental data and analysis allowed the description of the significant increase in the freezing delay times for positively charged nanoparticles and the sharp decrease for negatively charged ones in comparison to deionized water, based on the peculiarities of the water structure around the nanoparticles and in the vicinity of a superhydrophobic surface. In addition, this approach has allowed the successful explanation of the difference in the practical work of adhesion for deionized water and dispersions of DND with different particle charges.

2.
Magn Reson Med ; 86(2): 935-942, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724543

RESUMO

PURPOSE: Testing the potential use of saline suspension of polyvinylpyrrolidone (PVP)-coated gadolinium(Gd)-grafted detonation nanodiamonds (DND) as a novel contrast agent in MRI. METHODS: Stable saline suspensions of highly purified de-agglomerated Gd-grafted DND particles coated by a PVP protective shell were prepared. T1 and T2 proton relaxivities of the suspensions with varying gadolinium concentration were measured at 8 Tesla. A series of ex vivo (phantom) and in vivo dynamic scans were obtained in 3 Tesla MRI using PVP-coated Gd-grafted DND and gadoterate meglumin in equal concentrations of gadolinium, and then T1 -weighted hyperintensity was compared. RESULTS: The proton relaxivities of PVP-coated Gd-grafted DND were found to be r1 = 15.9 ± 0.8 s-1 mM-1 and r2 = 262 ± 15 s-1 mM-1 , respectively, which are somewhat less than those for uncoated Gd-grafted DND but still high enough. Ex vivo MRI evaluation of PVP-coated Gd-grafted DND results with a dose-dependent T1 -weighted hyperintensity with a significant advantage over the same for gadoterate meglumin. The same was found when the 2 contrast agents were tested in vivo. CONCLUSION: The novel MRI contrast agent - saline suspensions of PVP-coated Gd-grafted DND - provides significantly higher signal intensities than the common tracer gadoterate meglumin, therefore increasing its potential for a safer use in clinics.


Assuntos
Meios de Contraste , Nanodiamantes , Gadolínio , Imageamento por Ressonância Magnética , Povidona
3.
MAGMA ; 33(6): 885-888, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32347397

RESUMO

OBJECTIVES: Detonation nanodiamonds (DND) with Gd3+ ions directly grafted to the DND surface have recently demonstrated enhanced relaxivity for protons in aqueous suspensions. Herewith, the relaxivity measurements were done on a series of suspensions with the gadolinium content varied by changing number of Gd3+ ions grafted per each DND particle whereas the DND content in each suspension was kept the same. Such an approach to vary the contrast agent content differs from that commonly used in the relaxivity measurements. In the common approach, contrast agents are directly dissolved/suspended in media. Aiming to test validity of the unconventional approach, in the present study we follow the common way of measurement relaxivity: using variable concentrations of carriers (DND particles) in aqueous suspension keeping the number of Gd3+ ions per each carrier fixed. MATERIALS AND METHODS: 1H NMR relaxation measurements of aqueous suspensions of DND with Gd3+ ions directly grafted to the DND surface were carried out at room temperature (293 K or 20 °C) in the external magnetic field B0 = 8.0 T. RESULTS AND CONCLUSIONS: Comparative study of two approaches for measuring relaxivity in suspensions containing DND as magnetic entities' carriers reveals complete identity of techniques in use.


Assuntos
Nanodiamantes , Meios de Contraste , Gadolínio , Fenômenos Magnéticos , Imageamento por Ressonância Magnética , Suspensões
4.
J Nanosci Nanotechnol ; 15(2): 1030-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353609

RESUMO

We report on investigation of detonation nanodiamond annealed at 800C°in chlorine atmosphere by means of 1H, 13C and 35Cl nuclear magnetic resonance and X-ray photoelectron spectroscopy. The results of these methods are found to be consistent with each other and evidence formation of chlorine-carbon groups and sp2 carbon shell on the nanodiamond surface. The data obtained provide detailed information about the structure and bonding in this diamond nanoparticle. Interaction of nuclear spins with unpaired electron spins of dangling bonds results in fast 13C nuclear spin-lattice relaxation.


Assuntos
Cloro/química , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Absorção Fisico-Química , Adsorção , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Teste de Materiais , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície
5.
Sci Rep ; 8(1): 14154, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237450

RESUMO

This paper reports a facile and green method for conversion of graphene oxide (GO) into graphene by low-temperature heating (80 °C) in the presence of a glass wafer. Compared to conventional GO chemical reduction methods, the presented approach is easy-scalable, operationally simple, and based on the use of a non-toxic recyclable deoxygenation agent. The efficiency of the proposed method is further expanded by the fact that it can be applied for reducing both GO suspensions and large-scale thin films formed on various substrates prior to the reduction process. The quality of the obtained reduced graphene oxide (rGO) strongly depends on the type of the used glass wafer, and, particularly, magnesium silicate glass can provide rGO with the C/O ratio of 7.4 and conductivity of up to 33000 S*cm-1. Based on the data obtained, we have suggested a mechanism of the observed reduction process in terms of the hydrolysis of the glass wafer with subsequent interaction of the leached alkali and alkali earth cations and silicate anions with graphene oxide, resulting in elimination of the oxygen-containing groups from the latter one. The proposed approach can be efficiently used for low-cost bulk-quantity production of graphene and graphene-based materials for a wide field of applications.

6.
Nanoscale ; 10(27): 13223-13235, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29971299

RESUMO

Monodisperse carbon nanodots (MCNDs) having an identical composition, structure, shape and size possess identical chemical and physical properties, making them highly promising for various technical and medical applications. Herein, we report a facile and effective route to obtain monodisperse carbon nanodots 3.5 ± 0.9 nm in size by thermal decomposition of organosilane within the pores of monodisperse mesoporous silica particles with subsequent removal of the silica template. Structural studies demonstrated that the MCNDs we synthesized consist of ∼7-10 defective graphene layers that are misoriented with respect to each other and contain various oxygen-containing functional groups. It was demonstrated that, owing to their identical size and chemical composition, the MCNDs are formed via coagulation primary aggregates ∼10-30 nm in size, which are, in turn, combined into secondary porous spherical aggregates ∼100-200 nm in diameter. The processes of coagulation of MCNDs and peptization of their hierarchical aggregates are fully reversible and can be controlled by varying the MCND concentration or the pH value of the hydrosols. Submicrometer spherical aggregates of MCNDs are not disintegrated as the hydrosol is dried. The thus obtained porous spherical aggregates of MCNDs are promising for drug delivery as a self-disassembling container for medicinal preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA