Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 543(7643): 95-98, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28252079

RESUMO

Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.


Assuntos
Materiais Biomiméticos/química , Esmalte Dentário/química , Nanocompostos/química , Nanofios/química , Dente/química , Animais , Biomimética , Dureza , Humanos , Vibração , Óxido de Zinco/química
2.
Philos Trans A Math Phys Eng Sci ; 374(2071): 20160036, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27242294

RESUMO

This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

3.
Appl Opt ; 49(17): 3418-27, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20539362

RESUMO

We are concerned with the development of a three-dimensional (3D) full-field high-speed digital image correlation (DIC) measurement system using a single camera, specifically aimed at measuring large out-of-plane displacements. A system has been devised to record images at ultrahigh speeds using a single camera and a series of mirrors. These mirrors effectively converted a single camera into two virtual cameras that view a specimen surface from different angles and capture two images simultaneously. This pair of images enables one to perform DIC measurements to obtain 3D displacement fields at high framing rates. Bench testing along with results obtained using a shock wave blast test facility are used to show the validity of the method.

4.
Langmuir ; 25(24): 14093-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19824626

RESUMO

Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Revestidos Biocompatíveis/química , Poliuretanos/química , Animais , Células , Humanos , Nanoestruturas
5.
Materials (Basel) ; 12(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408944

RESUMO

Representative volume elements (RVEs) are commonly used to compute the effective elastic properties of solid media having repeating microstructure, such as fiber reinforced composites. However, for softening materials, an RVE could be problematic due to localization of deformation. Here, we address the effects of unit cell size and fiber packing on the transverse tensile response of fiber reinforced composites in the context of integrated computational materials engineering (ICME). Finite element computations for unit cells at the microscale are performed for different sizes of unit cells with random fiber packing that preserve a fixed fiber volume fraction-these unit cells are loaded in the transverse direction under tension. Salient features of the response are analyzed to understand the effects of fiber packing and unit cell size on the details of crack path, overall strength and also the shape of the stress-strain response before failure. Provision for damage accumulation/cracking in the matrix is made possible via the Bazant-Oh crack band model. The results suggest that the choice of unit cell size is more sensitive to strength and less sensitive to stiffness, when these properties are used as homogenized inputs to macro-scale models. Unit cells of smaller size exhibit higher strength and this strength converges to a plateau as the size of the unit cell increases. In this sense, since stiffness has also converged to a plateau with an increase in unit cell size, the converged unit cell size may be thought of as an RVE. Results in support of these insights are presented in this paper.

6.
J Phys Chem B ; 112(46): 14359-63, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18590319

RESUMO

The preparation of a high-strength and highly transparent nacre-like nanocomposite via layer-by-layer assembly technique from poly(vinyl alcohol) (PVA) and Na+-montmorillonite clay nanosheets is reported in this article. We show that a high density of weak bonding interactions between the polymer and the clay particles: hydrogen, dipole-induced dipole, and van der Waals undergoing break-reform deformations, can lead to high strength nanocomposites: sigmaUTS approximately 150 MPa and E' approximately 13 GPa. Further introduction of ionic bonds into the polymeric matrix creates a double network of sacrificial bonds which dramatically increases the mechanical properties: sigmaUTS approximately 320 MPa and E' approximately 60 GPa.


Assuntos
Carbonato de Cálcio/química , Luz , Nanocompostos/química , Nanotecnologia , Bentonita/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Álcool de Polivinil/química , Espectrofotometria Ultravioleta
7.
J Biomech ; 41(1): 1-10, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17904147

RESUMO

A micromechanical model has been developed to investigate the mechanical properties of the epimysium. In the present model, the collagen fibers in the epimysium are embedded randomly in the ground substance. Two parallel wavy collagen fibers and the surrounding ground substance are used as the repeat unit (unit cell), and the epimysium is considered as an aggregate of unit cells. Each unit cell is distributed in the epimysium with some different angle to the muscle fiber direction. The model allows the progressive straightening of the collagen fiber as well as the effects of fiber reorientation. The predictions of the model compare favorably against experiment. The effects of the collagen fiber volume fraction, collagen fiber waviness at the rest length and the mechanical properties of the collagen fibers and the ground substance are analyzed. This model allows the analysis of mechanical behavior of most soft tissues if appropriate experimental data are available.


Assuntos
Colágeno/fisiologia , Matriz Extracelular/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Elasticidade , Ratos , Estresse Mecânico
8.
ACS Nano ; 8(4): 3468-75, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24620996

RESUMO

Materials combining high stiffness and mechanical energy dissipation are needed in automotive, aviation, construction, and other technologies where structural elements are exposed to dynamic loads. In this paper we demonstrate that a judicious combination of carbon nanotube engineered trusses held in a dissipative polymer can lead to a composite material that simultaneously exhibits both high stiffness and damping. Indeed, the combination of stiffness and damping that is reported is quite high in any single monolithic material. Carbon nanotube (CNT) microstructures grown in a novel 3D truss topology form the backbone of these nanocomposites. The CNT trusses are coated by ceramics and by a nanostructured polymer film assembled using the layer-by-layer technique. The crevices of the trusses are then filled with soft polyurethane. Each constituent of the composite is accurately modeled, and these models are used to guide the manufacturing process, in particular the choice of the backbone topology and the optimization of the mechanical properties of the constituent materials. The resulting composite exhibits much higher stiffness (80 times) and similar damping (specific damping capacity of 0.8) compared to the polymer. Our work is a step forward in implementing the concept of materials by design across multiple length scales.

9.
Philos Trans A Math Phys Eng Sci ; 370(1965): 1942-65, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22431765

RESUMO

We present a novel approach to analyse the fracture of fibre-reinforced composites. Experimental results on mode I fracture of glass fibre and carbon fibre unidirectional laminates presented here and published by others in the open literature formed the basis for the analytical and numerical results presented. When details of the external loading rate are explicitly accounted for, a new picture of fracture emerges, which encompasses the possibility for non-smooth crack growth and the necessity to relax the use of a critical strain energy release rate as a criterion for crack advancement. Results predicted by adopting the analytical model presented here are seen to capture a wide variety of fracture responses that have been observed previously.

10.
ACS Nano ; 3(6): 1564-72, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19453145

RESUMO

Layer-by-layer assembly (LBL) can generate unique materials with high degrees of nanoscale organization and excellent mechanical, electrical, and optical properties. The typical nanometer scale thicknesses restrict their utility to thin films and coatings. Preparation of macroscale nanocomposites will indicate a paradigm change in the practice of LBL, materials manufacturing, and multiscale organization of nanocomponents. Such materials were made in this study via consolidation of individual LBL sheets from polyurethane. Substantial enhancement of mechanical properties after consolidation was observed. The resulting laminates are homogeneous, transparent, and highly ductile and display nearly 3x higher strength and toughness than their components. Hierarchically organized composites combining structural features from 1 to 1 000 000 nm at six different levels of dimensionality with a high degree of structural control at every level can be obtained. The functionality of the resulting fluorescent sandwiches of different colors makes possible mechanical deformation imaging with submicrometer resolution in real time and 3D capabilities.

11.
Ann Biomed Eng ; 36(10): 1615-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18686034

RESUMO

Skeletal muscle is composed of two primary structural components, contractile myofibrils and extracellular matrix (ECM). The myofibrils adhere to the surrounding endomysium through the basal lamina, sarcolemma and dystrophin, and dystrophin associated glycoprotein (DAG). In this study, a novel shear lag type model is developed to investigate the mechanics of injury to the single muscle fiber due to lengthening contractions. A single muscle fiber is considered as a composite system with reinforced by the contractile myofibrils. The lateral linkages between myofibril and endomysium is modeled as a zero thickness coating layer, that could be injured under high interfacial shear stress. The results shows that the degree of the muscle injury is correlated to the magnitude of the passive stretch during the contraction. Dystrophic muscles are more susceptible to contraction induced injury due to lack of DAG complex in lateral linkage.


Assuntos
Modelos Biológicos , Contração Muscular , Músculo Esquelético/lesões , Fenômenos Biomecânicos , Complexo de Proteínas Associadas Distrofina/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Humanos , Exercícios de Alongamento Muscular , Músculo Esquelético/fisiopatologia , Miofibrilas/fisiologia , Resistência ao Cisalhamento , Estresse Mecânico , Resistência à Tração
12.
Science ; 318(5847): 80-3, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17916728

RESUMO

Nanoscale building blocks are individually exceptionally strong because they are close to ideal, defect-free materials. It is, however, difficult to retain the ideal properties in macroscale composites. Bottom-up assembly of a clay/polymer nanocomposite allowed for the preparation of a homogeneous, optically transparent material with planar orientation of the alumosilicate nanosheets. The stiffness and tensile strength of these multilayer composites are one order of magnitude greater than those of analogous nanocomposites at a processing temperature that is much lower than those of ceramic or polymer materials with similar characteristics. A high level of ordering of the nanoscale building blocks, combined with dense covalent and hydrogen bonding and stiffening of the polymer chains, leads to highly effective load transfer between nanosheets and the polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA