Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood ; 134(21): 1847-1858, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31578203

RESUMO

During thrombopoiesis, megakaryocytes (MKs) form proplatelets within the bone marrow (BM) and release platelets into BM sinusoids. Phosphoinositide-dependent protein kinase-1 (PDK1) is required for Ca2+-dependent platelet activation, but its role in MK development and regulation of platelet production remained elusive. The present study explored the role of PDK1 in the regulation of MK maturation and polarization during thrombopoiesis using a MK/platelet-specific knockout approach. Pdk1-deficient mice (Pdk1-/-) developed a significant macrothrombocytopenia as compared with wild-type mice (Pdk1fl/fl). Pdk1 deficiency further dramatically increased the number of MKs without sinusoidal contact within the BM hematopoietic compartment, resulting in a pronounced MK hyperplasia and a significantly increased extramedullary thrombopoiesis. Cultured Pdk1-/- BM-MKs showed impaired spreading on collagen, associated with an altered actin cytoskeleton structure with less filamentous actin (F-actin) and diminished podosome formation, whereas the tubulin cytoskeleton remained unaffected. This phenotype was associated with abrogated phosphorylation of p21-activated kinase (PAK) as well as its substrates LIM domain kinase and cofilin, supporting the hypothesis that the defective F-actin assembly results from increased cofilin activity in Pdk1-deficient MKs. Pdk1-/- BM-MKs developed increased ploidy and exhibited an abnormal ultrastructure with disrupted demarcation membrane system (DMS). Strikingly, Pdk1-/- BM-MKs displayed a pronounced defect in DMS polarization and produced significantly less proplatelets, indicating that PDK1 is critically required for proplatelet formation. In human MKs, genetic PDK1 knockdown resulted in increased maturity but reduced platelet-like particles formation. The present observations reveal a pivotal role of PDK1 in the regulation of MK cytoskeletal dynamics and polarization, proplatelet formation, and thrombopoiesis.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Plaquetas/metabolismo , Citoesqueleto/metabolismo , Megacariócitos/metabolismo , Trombopoese/fisiologia , Animais , Plaquetas/citologia , Humanos , Megacariócitos/citologia , Camundongos , Camundongos Knockout
2.
Blood ; 130(25): 2774-2785, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28928125

RESUMO

Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-)physiology has remained elusive. The present study explored the impact of the CK2 regulatory ß-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2ß (ck2ß-/- ) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2ß-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2ß-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-triphosphate receptor-dependent intracellular calcium (Ca2+) release. Presumably due to a blunted increase in the concentration of cytosolic Ca2+, activation-dependent increases of α and dense-granule secretion and integrin αIIbß3 activation, and aggregation were abrogated in ck2ß-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo was significantly blunted in ck2ß-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2ß-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2ßfl/fl mice. The present observations reveal CK2ß as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo.


Assuntos
Caseína Quinase II/fisiologia , Fragmentos de Peptídeos/fisiologia , Ativação Plaquetária , Trombopoese , Trombose/patologia , Animais , Plaquetas , Sinalização do Cálcio , Caseína Quinase II/deficiência , Megacariócitos/metabolismo , Megacariócitos/patologia , Megacariócitos/ultraestrutura , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/deficiência , Trombose/etiologia , Trombose/metabolismo
3.
Biochem Biophys Res Commun ; 496(3): 792-798, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29395079

RESUMO

Platelet aggregation, dense granule secretion and thrombus formation are dependent on sphingolipids like ceramide and sphingosine as well as sphingosine-1 phosphate. Sphingosine/ceramide metabolism involves ceramide synthases and ceramidases. However, the role of ceramide synthase and ceramidase in the regulation of platelet function remained ill-defined. The present study determined transmission light aggregometry, employed luciferase based ATP release measurements and studied in vitro thrombus formation under high arterial shear rates in order to define the impact of pharmacological inhibition of serine palmitoyltransferase, ceramide synthase and ceramidase on platelet function. As a result, inhibition of ceramidase significantly blunted collagen related peptide (CRP) induced glyocoprotein VI (GPVI)-dependent platelet aggregation, ATP release and thrombus formation on a collagen-coated surface under shear rates of 1700-sec. Defective platelet aggregation after ceramidase inhibition could partially be overcome by exogenous sphingosine treatment reflecting a pivotal role of ceramidase-derived sphingosine in platelet function. Inhibition of serine palmitoyltransferase and ceramide synthase did not significantly modify GPVI-dependent platelet activation. In conclusion, the present study unraveled ceramidase as a crucial player in sphingosine-induced platelet activation following GPVI-dependent signaling.


Assuntos
Plaquetas/enzimologia , Ceramidases/metabolismo , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/enzimologia , Trombose/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos
4.
Eur Heart J ; 38(25): 1993-2005, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431006

RESUMO

AIMS: Hyperlipidaemia enhances susceptibility to thrombosis, while platelet oxidixed LDL (oxLDL) binding in acute coronary syndrome (ACS) correlates with activation status. This study explores the platelet lipidome in symptomatic coronary artery disease (CAD) patients and the functional consequences of the chemokine CXCL12 and its receptors CXCR-4/-7 on lipid uptake in platelets. METHODS AND RESULTS: Platelet-oxLDL detected by flow cytometry was enhanced (P = 0.04) in CAD patients, moderately correlated with platelet CXCR7 surface expression (ρ = 0.39; P < 0.001), while inversely with CXCR4 (ρ = 0.35; P < 0.001). Platelet-oxLDL was elevated (P = 0.01) in ACS patients with angiographic evidence of intracoronary thrombi. Ex vivo analysis of intracoronary thrombi sections revealed oxLDL deposition in platelet-enriched areas verified by immunofluorescence confocal microscopy. LDL-oxLDL uptake enhanced reactive oxygen species, mitochondrial superoxide generation, intraplatelet LDL to oxLDL conversion, and lipid peroxidation, counteracted by SOD2-mimetic MnTMPyP. Lipidomic analysis revealed enhanced intraplatelet-oxidized phospholipids, cholesteryl esters, sphingomyelin, ceramides, di- and triacylglycerols, acylcarnitines in CAD patients compared with age-matched controls as ascertained by liquid chromatography hyphenated to high-resolution mass spectrometry. LDL-oxLDL induced degranulation, αIIbß3-integrin activation, apoptosis, thrombin generation estimated by calibrated automated thrombinoscopy, and shape change verified by live imaging using scanning ion conductance microscopy. Further, LDL-oxLDL enhanced thrombus formation ex vivo and in vivo in mice (ferric chloride-induced carotid artery injury). LDL-oxLDL enhanced platelet CXCL12 release, differentially regulated CXCR4-CXCR7 surface exposure, while CXCL12 prompted LDL-oxLDL uptake and synergistically augmented the LDL-oxLDL-induced pro-oxidative, thrombogenic impact on platelet function. CONCLUSION: An altered platelet lipidome might be associated with thrombotic disposition in CAD, a mechanism potentially regulated by CXCL12-CXCR4-CXCR7 axis.


Assuntos
Plaquetas/metabolismo , Doença da Artéria Coronariana/etiologia , Lipoproteínas LDL/metabolismo , Síndrome Coronariana Aguda/etiologia , Síndrome Coronariana Aguda/metabolismo , Idoso , Estudos de Casos e Controles , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/fisiologia , Doença da Artéria Coronariana/metabolismo , Trombose Coronária/etiologia , Trombose Coronária/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR/fisiologia , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiologia
5.
Am J Physiol Cell Physiol ; 312(6): C765-C774, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404545

RESUMO

Platelet adhesion, activation, and aggregation are essential for primary hemostasis, but are also critically involved in the development of acute arterial thrombotic occlusion. Stimulation of the collagen receptor glycoprotein VI (GPVI) leads to phospholipase Cγ2-dependent inositol triphosphate (IP3) production with subsequent platelet activation, due to increased intracellular Ca2+ concentration ([Ca2+]i). Although tricyclic antidepressants have been shown to potentially impair platelet activation, nothing is hitherto known about potential effects of the tricyclic antidepressant doxepin on platelet Ca2+ signaling and thrombus formation. As shown in the present study, doxepin significantly diminished the stimulatory effect of GPVI agonist collagen-related peptide (CRP) on intracellular Ca2+ release as well as subsequent extracellular Ca2+ influx. Doxepin was partially effective by impairment of CRP-dependent IP3 production. Moreover, doxepin abrogated CRP-induced platelet degranulation and integrin αIIbß3 activation and aggregation. Finally, doxepin markedly blunted in vitro platelet adhesion to collagen and thrombus formation under high arterial shear rates (1,700-s). In conclusion, doxepin is a powerful inhibitor of GPVI-dependent platelet Ca2+ signaling, platelet activation, and thrombus formation.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Plaquetas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/genética , Doxepina/farmacologia , Peptídeos/genética , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Inositol 1,4,5-Trifosfato/metabolismo , Transporte de Íons/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Estresse Mecânico , Trombose/prevenção & controle
6.
Arterioscler Thromb Vasc Biol ; 36(8): 1507-16, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27339458

RESUMO

OBJECTIVE: Activation of platelets by subendothelial collagen results in an increase of cytosolic Ca(2+) concentration ([Ca(2+)]i) and is followed by platelet activation and thrombus formation that may lead to vascular occlusion. The present study determined the role of phosphoinositide-dependent protein kinase 1 (PDK1) in collagen-dependent platelet Ca(2+) signaling and ischemic stroke in vivo. APPROACH AND RESULTS: Platelet activation with collagen receptor glycoprotein VI agonists collagen-related peptide or convulxin resulted in a significant increase in PDK1 activity independent of second-wave signaling. PDK1 deficiency was associated with reduced platelet phospholipase Cγ2-dependent inositol-1,4,5-trisphosphate production and intracellular [Ca(2+)]i in response to stimulation with collagen-related peptide or convulxin. The defective increase of [Ca(2+)]i resulted in a substantial defect in activation-dependent platelet secretion and aggregation on collagen-related peptide stimulation. Furthermore, Rac1 activation and spreading, adhesion to collagen, and thrombus formation under high arterial shear rates were significantly diminished in PDK1-deficient platelets. Mice with PDK1-deficient platelets were protected against arterial thrombotic occlusion after FeCl3-induced mesenteric arterioles injury and ischemic stroke in vivo. These mice had significantly reduced brain infarct volumes, with a significantly increased survival of 7 days after transient middle cerebral artery occlusion without increase of intracerebral hemorrhage. Tail bleeding time was prolonged in pdk1(-/-) mice, reflecting an important role of PDK1 in primary hemostasis. CONCLUSIONS: PDK1 is required for Ca(2+)-dependent platelet activation on stimulation of collagen receptor glycoprotein VI, arterial thrombotic occlusion, and ischemic stroke in vivo.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Plaquetas/enzimologia , Sinalização do Cálcio , Colágeno/metabolismo , Infarto da Artéria Cerebral Média/enzimologia , Ativação Plaquetária , Trombose/enzimologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/deficiência , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/patologia , Inositol 1,4,5-Trifosfato/sangue , Camundongos Knockout , Neuropeptídeos/sangue , Fenótipo , Fosfolipase C gama/sangue , Adesividade Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/deficiência , Glicoproteínas da Membrana de Plaquetas/genética , Trombose/sangue , Trombose/patologia , Fatores de Tempo , Proteínas rac1 de Ligação ao GTP/sangue
7.
J Am Coll Cardiol ; 69(17): 2160-2172, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28449778

RESUMO

BACKGROUND: Tachycardiomyopathy or tachycardia-induced cardiomyopathy (TCM) has been known for decades as a reversible form of nonischemic cardiomyopathy. However, its mechanism and properties remain poorly understood. OBJECTIVES: The current study investigated endomyocardial biopsy samples from patients with TCM and compared them with samples from patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (ICM). METHODS: The study included 189 patients with new-onset heart failure and severely reduced ejection fraction not caused by valvular or ischemic heart disease. Nineteen patients retrospectively fulfilled common criteria of TCM, 79 patients had a diagnosis of DCM, and 91 had a diagnosis of ICM. RESULTS: Patients with TCM, on the basis of clinical criteria, had stronger myocardial expression of major histocompatibility complex class II molecule and enhanced infiltration of CD68+ macrophages compared with patients with DCM. Furthermore, when compared with patients with ICM, the presence of T cells and macrophages was significantly reduced in TCM. Myocardial fibrosis was detected to a significantly lower degree in patients with TCM compared with patients with DCM and ICM. Electron microscopic examination revealed severe structural changes in patients with TCM. A disturbed distribution pattern of mitochondria was predominantly present in TCM. Quantitative assessment of myocyte morphology revealed significantly enhanced myocyte size compared with patients with ICM. Ribonucleic acid expression analysis identified changes in metabolic pathways among the patient groups. CONCLUSIONS: TCM is characterized by changes in cardiomyocyte and mitochondrial morphology accompanied by a macrophage-dominated cardiac inflammation. Thus, further prospective studies are warranted to characterize patients with TCM by endomyocardial biopsy more clearly.


Assuntos
Cardiomiopatias/imunologia , Miocárdio/patologia , Taquicardia/complicações , Adulto , Idoso , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Feminino , Humanos , Macrófagos , Masculino , Pessoa de Meia-Idade , Mitocôndrias , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Estudos Retrospectivos , Taquicardia/metabolismo
8.
Thromb Haemost ; 117(11): 2063-2078, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28981554

RESUMO

Cyclophilin A (CyPA) is involved in the pathophysiology of several inflammatory and cardiovascular diseases. To our knowledge, there is no specific inhibitor targeting extracellular CyPA without affecting other extracellular cyclophilins or intracellular CyPA functions. In this study, we developed an antibody-based inhibitor of extracellular CyPA and analysed its effects in vitro and in vivo. To generate a specific antibody, mice and rats were immunized with a peptide containing the extracellular matrix metalloproteinase inducer binding site and various antibody clones were selected and purified. At first, antibodies were tested for their binding capacity to recombinant CyPA and their functional activity. The clone 8H7-mAb was chosen for further experiments. 8H7-mAb reduced the CyPA-induced migration of inflammatory cells in vitro and in vivo. Furthermore, 8H7-mAb revealed strong antithrombotic effects by inhibiting CyPA-dependent activation of platelets and thrombus formation in vitro and in vivo. Surprisingly, 8H7-mAb did not influence in vivo tail bleeding time or in vitro whole blood coagulation parameters. Our study provides first evidence that antibody-based inhibition of extracellular CyPA inhibits thrombosis and thromboinflammation without affecting blood homeostasis. Thus, 8H7-mAb may be a promising compound for thrombi modulation in inflammatory diseases to prevent organ dysfunction.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Ciclofilina A/sangue , Inflamação/sangue , Peritonite/sangue , Ativação Plaquetária , Trombose/sangue , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Basigina/metabolismo , Plaquetas/efeitos dos fármacos , Adesão Celular , Movimento Celular , Células Cultivadas , Ciclofilina A/antagonistas & inibidores , Modelos Animais de Doenças , Fibrinolíticos/farmacologia , Humanos , Inflamação/prevenção & controle , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Peritonite/induzido quimicamente , Peritonite/prevenção & controle , Ativação Plaquetária/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Ratos , Trombose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA