Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 104(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37432877

RESUMO

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses. A library of 18 000 small molecules was screened for PDE12 inhibitor activity using a fluorescent probe specific for PDE12. The lead compounds (CO-17 or CO-63) were tested in cell-based antiviral assays using encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), dengue virus (DENV), West Nile virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro. Cross reactivity of PDE12 inhibitors with other PDEs and in vivo toxicity were measured. In EMCV assays, CO-17 potentiated the effect of IFNα by 3 log10. The compounds were selective for PDE12 when tested against a panel of other PDEs and non-toxic at up to 42 mg kg-1 in rats in vivo. Thus, we have identified PDE12 inhibitors (CO-17 and CO-63), and established the principle that inhibitors of PDE12 have antiviral properties. Early studies suggest these PDE12 inhibitors are well tolerated at the therapeutic range, and reduce viral load in studies of DENV, HCV, WNV and SARS-CoV-2 in human cells and WNV in a mouse model.


Assuntos
COVID-19 , Vírus de RNA , Humanos , Camundongos , Animais , Ratos , Antivirais/farmacologia , SARS-CoV-2 , Interferon-alfa , Vírus da Encefalomiocardite , Diester Fosfórico Hidrolases
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298476

RESUMO

The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/metabolismo , Mutação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética
3.
Microbiology (Reading) ; 168(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36748532

RESUMO

AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Bactérias/genética , Antibacterianos/farmacologia , Transporte Biológico , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
4.
BMC Microbiol ; 22(1): 113, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468722

RESUMO

BACKGROUND: Silver ions have potent broad-spectrum antimicrobial activity and are widely incorporated into a variety of products to limit bacterial growth. In Enterobacteriaceae, decreased silver susceptibility has been mapped to two homologous operons; the chromosomally located cus operon and the plasmid based sil operon. Here we characterised the mechanisms and clinical impact of induced silver tolerance in Klebsiella pneumoniae. RESULTS: In K. pneumoniae carriage of the sil operon alone does not give elevated silver tolerance. However, when exposed to increasing concentrations of silver nitrate (AgNO3), K. pneumoniae strains which contain the sil operon, will preferentially mutate SilS, resulting in overexpression of the genes encoding the RND efflux pump silCBA. Those strains which do not carry the sil operon also adapt upon exposure to increasing silver concentrations through mutations in another two-component regulator CusS. Secondary mutations leading to disruption of the outer membrane porin OmpC were also detected. Both routes result in a high level of silver tolerance with MIC's of >512 mg/L. When exposed to a high concentration of AgNO3 (400 mg/L), only strains that contained the sil operon were able to survive, again through mutations in SilS. The AgNO3 adapted strains were also resistant to killing by challenge with several clinical and commercial silver containing dressings. CONCLUSIONS: This study shows that K. pneumoniae has two possible pathways for development of increased silver tolerance but that the sil operon is preferentially mutated. This operon is essential when K. pneumoniae is exposed to high concentrations of silver. The potential clinical impact on wound management is shown by the increased survivability of these adapted strains when exposed to several silver impregnated dressings. This would make infections with these strains more difficult to treat and further limits our therapeutic options.


Assuntos
Proteínas de Bactérias/genética , Klebsiella pneumoniae , Porinas , Íons , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Mutação , Porinas/genética
5.
PLoS Pathog ; 15(12): e1008101, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31877175

RESUMO

Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos BALB C , Periplasma/efeitos dos fármacos , Periplasma/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo
6.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674437

RESUMO

Octenidine-based disinfection products are becoming increasingly popular for infection control of multidrug-resistant (MDR) Gram-negative isolates. When a waste trap was removed from a hospital and allowed to acclimatize in a standard tap rig in our laboratory, it was shown that Klebsiella pneumoniae, Pseudomonas aeruginosa, and Citrobacter and Enterobacter spp. were readily isolated. This study aimed to understand the potential impact of prolonged exposure to low doses of a commercial product containing octenidine on these bacteria. Phenotypic and genotypic analyses showed that P. aeruginosa strains had increased tolerance to octenidine, which was characterized by mutations in the Tet repressor SmvR. Enterobacter species demonstrated increased tolerance to many other cationic biocides, although not octenidine, as well as the antibiotics ciprofloxacin, chloramphenicol, and ceftazidime, through mutations in another Tet repressor, RamR. Citrobacter species with mutations in RamR and MarR were identified following octenidine exposure, and this is linked to development of resistance to ampicillin, piperacillin, and chloramphenicol, as well as an increased MIC for ciprofloxacin. Isolates were able to retain fitness, as characterized by growth, biofilm formation, and virulence in Galleria mellonella, after prolonged contact with octenidine, although there were strain-to-strain differences. These results demonstrate that continued low-level octenidine exposure in a simulated sink trap environment selects for mutations that affect smvR It may also promote microbial adaptation to other cationic biocides and cross-resistance to antibiotics, while not incurring a fitness cost. This suggests that hospital sink traps may act as a reservoir for more biocide-tolerant organisms.IMPORTANCE Multidrug-resistant (MDR) strains of bacteria are a major clinical problem, and several reports have linked outbreaks of MDR bacteria with bacterial populations in hospital sinks. Biocides such as octenidine are used clinically in body washes and other products, such as wound dressings for infection control. Therefore, increased tolerance to these biocides would be detrimental to infection control processes. Here, we exposed bacterial populations originally from hospital sink traps to repeated dosing with an octenidine-containing product over several weeks and observed how particular species adapted. We found mutations in genes related to biocide and antibiotic susceptibility, which resulted in increased tolerance, although this was species dependent. Bacteria that became more tolerant to octenidine also showed no loss of fitness. This shows that prolonged octenidine exposure has the potential to promote microbial adaptation in the environment and that hospital sink traps may act as a reservoir for increased biocide- and antibiotic-tolerant organisms.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Piridinas/farmacologia , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Hospitais , Iminas , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos
7.
Bioorg Med Chem ; 30: 115900, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352389

RESUMO

We report the application of a covalent probe based on a d-glucosamine scaffold for the profiling of the bacterial pathogen Klebsiella pneumoniae. Incubation of K. pneumoniae lysates with the probe followed by electrophoretic separation and in-gel fluorescence detection allowed the generation of strain-specific signatures and the differentiation of a carbapenem-resistant strain. The labelling profile of the probe was independent of its anomeric configuration and included several low-abundance proteins not readily detectable by conventional protein staining. Initial target identification experiments by mass spectrometry suggest that target proteins include several carbohydrate-recognising proteins, which indicates that the sugar scaffold may have a role for target recognition.


Assuntos
Proteínas de Bactérias/genética , Corantes Fluorescentes/química , Glucosamina/química , Klebsiella pneumoniae/genética , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Perfilação da Expressão Gênica , Glucosamina/síntese química , Klebsiella pneumoniae/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801221

RESUMO

Acinetobacter baumannii is an important cause of nosocomial infections worldwide. The elucidation of the carbapenem resistance mechanisms of hospital strains is necessary for the effective treatment and prevention of resistance gene transmission. The main mechanism of carbapenem resistance in A. baumannii is carbapenemases, whose expressions are affected by the presence of insertion sequences (ISs) upstream of blaCHDL genes. In this study, 61 imipenem-nonsusceptible A. baumannii isolates were characterized using phenotypic (drug-susceptibility profile using CarbaAcineto NP) and molecular methods. Pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) methods were utilized for the genotyping. The majority of isolates (59/61) carried one of the following acquired blaCHDL genes: blaOXA-24-like (39/59), ISAba1-blaOXA-23-like (14/59) or ISAba3-blaOXA-58-like (6/59). Whole genome sequence analysis of 15 selected isolates identified the following intrinsic blaOXA-66 (OXA-51-like; n = 15) and acquired class D ß-lactamases (CHDLs): ISAba1-blaOXA-23 (OXA-23-like; n = 7), ISAba3-blaOXA-58-ISAba3 (OXA-58-like; n = 2) and blaOXA-72 (OXA-24-like; n = 6). The isolates were classified into 21 pulsotypes using PFGE, and the representative 15 isolates were found to belong to sequence type ST2 of the Pasteur MLST scheme from the global IC2 clone. The Oxford MLST scheme revealed the diversity among these studied isolates, and identified five sequence types (ST195, ST208, ST208/ST1806, ST348 and ST425). CHDL-type carbapenemases and insertion elements upstream of the blaCHDL genes were found to be widespread among Polish A. baumannii clinical isolates, and this contributed to their carbapenem resistance.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Humanos , Tipagem de Sequências Multilocus , beta-Lactamases/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-27799211

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that is often difficult to treat due to its multidrug resistance (MDR). We have previously shown that K. pneumoniae strains are able to "adapt" (become more resistant) to the widely used bisbiguanide antiseptic chlorhexidine. Here, we investigated the mechanisms responsible for and the phenotypic consequences of chlorhexidine adaptation, with particular reference to antibiotic cross-resistance. In five of six strains, adaptation to chlorhexidine also led to resistance to the last-resort antibiotic colistin. Here, we show that chlorhexidine adaptation is associated with mutations in the two-component regulator phoPQ and a putative Tet repressor gene (smvR) adjacent to the major facilitator superfamily (MFS) efflux pump gene, smvA Upregulation of smvA (10- to 27-fold) was confirmed in smvR mutant strains, and this effect and the associated phenotype were suppressed when a wild-type copy of smvR was introduced on plasmid pACYC. Upregulation of phoPQ (5- to 15-fold) and phoPQ-regulated genes, pmrD (6- to 19-fold) and pmrK (18- to 64-fold), was confirmed in phoPQ mutant strains. In contrast, adaptation of K. pneumoniae to colistin did not result in increased chlorhexidine resistance despite the presence of mutations in phoQ and elevated phoPQ, pmrD, and pmrK transcript levels. Insertion of a plasmid containing phoPQ from chlorhexidine-adapted strains into wild-type K. pneumoniae resulted in elevated expression levels of phoPQ, pmrD, and pmrK and increased resistance to colistin, but not chlorhexidine. The potential risk of colistin resistance emerging in K. pneumoniae as a consequence of exposure to chlorhexidine has important clinical implications for infection prevention procedures.


Assuntos
Antibacterianos/farmacologia , Clorexidina/farmacologia , Colistina/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Mutação/genética , Plasmídeos/genética
11.
Bioorg Med Chem ; 25(15): 3971-3979, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600080

RESUMO

A novel series of pyridyl nitrofuranyl isoxazolines were synthesized and evaluated for their antibacterial activity against multiple drug resistant (MDR) Staphylococcus strains. Compounds with piperazine linker between the pyridyl group and isoxazoline ring showed better activity when compared to compounds without the piperazine linker. 3-Pyridyl nitrofuranyl isoxazoline with a piperazine linker was found to be more active than corresponding 2-and 4-pyridyl analogues with MICs in the range of 4-32µg/mL against MDR Staphylococcus strains. The eukaryotic toxicity of the compounds was tested by MTT assay and were found to be non-toxic against both non-tumour lung fibroblast WI-38 and cervical cancer cell line HeLa. The most active pyridyl nitrofuranyl isoxazoline compound showed improved activity against a panel of Staphylococcus strains compared to nitrofuran group containing antibiotic nitrofurantoin.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nitrofurantoína/química , Oxazóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Oxazóis/química , Análise Espectral , Relação Estrutura-Atividade
12.
Antimicrob Agents Chemother ; 59(7): 3966-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896708

RESUMO

The EGD Murray collection consists of approximately 500 clinical bacterial isolates, mainly Enterobacteriaceae, isolated from around the world between 1917 and 1949. A number of these "Murray" isolates have subsequently been identified as Klebsiella pneumoniae. Antimicrobial susceptibility testing of these isolates showed that over 30% were resistant to penicillins due to the presence of diverse blaSHV ß-lactamase genes. Analysis of susceptibility to skin antiseptics and triclosan showed that while the Murray isolates displayed a range of MIC/minimal bactericidal concentration (MBC) values, the mean MIC value was lower than that for more modern K. pneumoniae isolates tested. All Murray isolates contained the cation efflux gene cepA, which is involved in disinfectant resistance, but those that were more susceptible to chlorhexidine were found to have a 9- or 18-bp insertion in this gene. Susceptibility to other disinfectants, e.g., H2O2, in the Murray isolates was comparable to that in modern K. pneumoniae isolates. The Murray isolates were also less virulent in Galleria and had a different complement of putative virulence factors than the modern isolates, with the exception of an isolate related to the modern lineage CC23. More of the modern isolates (41% compared to 8%) are classified as good/very good biofilm formers, but there was overlap in the two populations. This study demonstrated that a significant proportion of the Murray Klebsiella isolates were resistant to penicillins before their routine use. This collection of pre-antibiotic era isolates may provide significant insights into adaptation in K. pneumoniae in relation to biocide susceptibility.


Assuntos
Antibacterianos/farmacologia , Desinfetantes/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Mariposas/microbiologia , Animais , Biofilmes/efeitos dos fármacos , Clorexidina/farmacologia , Humanos , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Mutagênese Insercional , Resistência às Penicilinas/efeitos dos fármacos , Triclosan/farmacologia , Fatores de Virulência , beta-Lactamases/genética
13.
J Antimicrob Chemother ; 70(8): 2209-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25904728

RESUMO

OBJECTIVES: Colistin resistance in Acinetobacter baumannii has been associated with loss of virulence and a negative impact on isolate selection. In this study, exposure of clinical isolates to suboptimal concentrations of colistin was used to explore the capacity to develop resistance by diverse mechanisms, and whether acquired resistance always reduces fitness and virulence. METHODS: Twelve colistin-susceptible clinical A. baumannii isolates were exposed to a sub-MIC concentration of colistin over 6 weeks with weekly increases in concentration. Stable resistance was then phenotypically investigated with respect to antibiotic/biocide resistance, virulence in Galleria mellonella and growth rate. Putative mechanisms of resistance were identified by targeted sequencing of known resistance loci. RESULTS: Eight A. baumannii isolates acquired resistance to colistin within 1 week with MICs ranging from 2 to >512 mg/L. By 6 weeks 11 isolates were resistant to colistin; this was linked to the development of mutations in pmr or lpx genes. Strains that developed mutations in lpxACD showed a loss of virulence and increased susceptibility to several antibiotics/disinfectants tested. Two of the colistin-resistant strains with mutations in pmrB retained similar virulence levels to their respective parental strains in G. mellonella. CONCLUSIONS: Acquisition of colistin resistance does not always lead to a loss of virulence, especially when this is linked to mutations in pmrB. This underlines the importance of understanding the mechanism of colistin resistance as well as the phenotype.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Mutação , Animais , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Bacterianos , Lepidópteros/microbiologia , Testes de Sensibilidade Microbiana , Modelos Animais , Análise de Sequência de DNA , Inoculações Seriadas , Análise de Sobrevida , Virulência
14.
Sci Rep ; 13(1): 13912, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626085

RESUMO

The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Ovinos , Imunização Passiva , Cinética , Imunoglobulina G
15.
Infect Immun ; 80(9): 3247-55, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22778096

RESUMO

Burkholderia pseudomallei is a Gram-negative soil bacterium and the causative agent of melioidosis, a disease of humans and animals. It is also listed as a category B bioterrorism threat agent by the U.S. Centers for Disease Control and Prevention, and there is currently no melioidosis vaccine available. Small modified nucleotides such as the hyperphosphorylated guanosine molecules ppGpp and pppGpp play an important role as signaling molecules in prokaryotes. They mediate a global stress response under starvation conditions and have been implicated in the regulation of virulence and survival factors in many bacterial species. In this study, we created a relA spoT double mutant in B. pseudomallei strain K96243, which lacks (p)ppGpp-synthesizing enzymes, and investigated its phenotype in vitro and in vivo. The B. pseudomallei ΔrelA ΔspoT mutant displayed a defect in stationary-phase survival and intracellular replication in murine macrophages. Moreover, the mutant was attenuated in the Galleria mellonella insect model and in both acute and chronic mouse models of melioidosis. Vaccination of mice with the ΔrelA ΔspoT mutant resulted in partial protection against infection with wild-type B. pseudomallei. In summary, (p)ppGpp signaling appears to represent an essential component of the regulatory network governing virulence gene expression and stress adaptation in B. pseudomallei, and the ΔrelA ΔspoT mutant may be a promising live-attenuated vaccine candidate.


Assuntos
Burkholderia pseudomallei/imunologia , Burkholderia pseudomallei/patogenicidade , Ligases/metabolismo , Pirofosfatases/metabolismo , Fatores de Virulência/metabolismo , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Deleção de Genes , Humanos , Lepidópteros , Ligases/genética , Macrófagos/microbiologia , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Pirofosfatases/genética , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Virulência
16.
Eukaryot Cell ; 10(7): 964-76, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571922

RESUMO

The unicellular eukaryote Trypanosoma brucei is unusual in having very little transcriptional control. The bulk of the T. brucei genome is constitutively transcribed by RNA polymerase II (Pol II) as extensive polycistronic transcription units. Exceptions to this rule include several RNA Pol I transcription units such as the VSG expression sites (ESs), which are mono-allelically expressed. TbISWI, a member of the SWI2/SNF2 related chromatin remodeling ATPases, plays a role in repression of Pol I-transcribed ESs in both bloodstream- and procyclic-form T. brucei. We show that TbISWI binds both active and silent ESs but is depleted from the ES promoters themselves. TbISWI knockdown results in an increase in VSG transcripts from the silent VSG ESs. In addition to its role in the repression of the silent ESs, TbISWI also contributes to the downregulation of the Pol I-transcribed procyclin loci, as well as nontranscribed VSG basic copy arrays and minichromosomes. We also show that TbISWI is enriched at a number of strand switch regions which form the boundaries between Pol II transcription units. These strand switch regions are the presumed sites of Pol II transcription initiation and termination and are enriched in modified histones and histone variants. Our results indicate that TbISWI is a versatile chromatin remodeler that regulates transcription at multiple Pol I loci and is particularly abundant at many Pol II transcription boundaries in T. brucei.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , RNA Polimerase II/genética , RNA Polimerase I/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Alelos , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Histonas , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Trypanosoma brucei brucei/enzimologia
17.
J Med Microbiol ; 71(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35324422

RESUMO

Introduction. We are becoming increasingly reliant on the effectiveness of biocides to combat the spread of Gram-negative multi-drug-resistant (MDR) pathogens, including Klebsiella pneumoniae. It has been shown that chlorhexidine exposure can lead to mutations in the efflux pump repressor regulators SmvR and RamR, but the contribution of each individual efflux pump to biocide tolerance is unknown.Hypothesis. Multiple efflux pumps, including SmvA and AcrAB-TolC, are involved in increased tolerance to biocides. However, strains with upregulated AcrAB-TolC caused by biocide exposure are more problematic due to their increased MDR phenotype.Aim. To investigate the role of AcrAB-TolC in the tolerance to several biocides, including chlorhexidine, and the potential threat of cross-resistance to antibiotics through increased expression of this efflux pump.Methodology. Antimicrobial susceptibility testing was performed on K. pneumoniae isolates with ramR mutations selected for after exposure to chlorhexidine, as well as transposon mutants in components and regulators of AcrAB-TolC. RTPCR was used to detect the expression levels of this pump after biocide exposure. Strains from the globally important ST258 clade were compared for genetic differences in acrAB-TolC and its regulators and for phenotypic differences in antimicrobial susceptibility.Results. Cross-resistance to antimicrobials was observed following mutations in ramR. Exposure to chlorhexidine led to increased expression of acrA and its activator ramA, and transposon mutants in AcrAB-TolC have increased susceptibility to several biocides, including chlorhexidine. Variations in ramR within the ST258 clade led to an increase in tolerance to certain biocides, although this was strain dependent. One strain, MKP103, that had increased levels of biocide tolerance showed a unique mutation in ramR that was reflected in enhanced expression of acrA and ramA. MKP103 transposon variants were able to further enhance their tolerance to specific biocides with mutations affecting SmvA.Conclusions. Biocide tolerance in K. pneumoniae is dependent upon several components, with increased efflux through AcrAB-TolC being an important one.


Assuntos
Clorexidina , Desinfetantes , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorexidina/farmacologia , Desinfetantes/farmacologia , Klebsiella
18.
mSphere ; 7(3): e0016622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35491843

RESUMO

Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterized by low levels of lactobacilli and overgrowth of a diverse group of bacteria, associated with higher risk of a variety of infections, surgical complications, cancer, and preterm birth (PTB). Despite the lack of a consistently applicable etiology, Prevotella spp. are often associated with both BV and PTB, and Pr. bivia has known symbiotic relationships with both Peptostreptococcus anaerobius and Gardnerella vaginalis. Higher risk of PTB can also be predicted by a composite of metabolites linked to bacterial metabolism, but their specific bacterial source remains poorly understood. Here, we characterize diversity of metabolic strategies among BV-associated bacteria and lactobacilli and the symbiotic metabolic relationships between Pr. bivia and its partners and show how these influence the availability of metabolites associated with BV/PTB and/or pro- or anti-inflammatory immune responses. We confirm a commensal relationship between Pe. anaerobius and Pr. bivia, refining its mechanism, which sustains a substantial increase in acetate production. In contrast, the relationship between Pr. bivia and G. vaginalis strains, with sequence variant G2, is mutualistic, with outcome dependent on the metabolic strategy of the G. vaginalis strain. Taken together, our data show how knowledge of inter- and intraspecies metabolic diversity and the effects of symbiosis may refine our understanding of the mechanism and approach to risk prediction in BV and/or PTB. IMPORTANCE Bacterial vaginosis (BV) is the most common vaginal infection for women of childbearing age. Although 50% of women with BV do not have any symptoms, it approximately doubles the risk of catching a sexually transmitted infection and also increases the risk of preterm delivery in pregnant women. Recent studies of the vaginal microbiota have suggested that variation between species in the same genus or between strains of the same species explain better or poorer outcomes or at least some coexistence patterns for bacteria of concern. We tested whether such variation is manifested in how vaginal bacteria grow in the laboratory and whether and how they may share nutrients. We then showed that this affected the overall cocktail of chemicals they produce, including bacterially derived chemicals that we have previously shown are linked to a higher risk of preterm delivery.


Assuntos
Nascimento Prematuro , Vaginose Bacteriana , Bactérias , Feminino , Humanos , Recém-Nascido , Lactobacillus , Espectroscopia de Ressonância Magnética , Gravidez , Simbiose , Vaginose Bacteriana/microbiologia
19.
Antiviral Res ; 203: 105332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533779

RESUMO

Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , COVID-19/terapia , Análise Custo-Benefício , Imunização Passiva , SARS-CoV-2 , Ovinos , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
20.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647275

RESUMO

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA