Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 3): 114690, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334825

RESUMO

The presence of antibiotics in the environment causes increasing attention due to their potential risks to ecosystems and public health. Laccases are versatile oxidases capable of degrading various organic contaminants including pharmaceuticals. However, the performance of bacterial laccases on tetracycline antibiotics (TCs) degradation is seldom investigated. In this work, a bacterial laccase from Bacillus amyloliquefaciens was immobilized as laccase-inorganic hybrid nanoflowers (Lac-hNFs) by a facile and rapid method. The immobilized laccase was employed to remove different TCs including tigecycline, which is a third-generation TC that its degradation by laccase has not been reported. Lac-hNFs were synthesized by sonication-mediated self-assembly of laccase and copper ions in 5 min at room temperature. About 95% of laccase could be encapsulated in the nanoflowers, and the obtained Lac-hNFs exhibited great enhancement in stability under harsh conditions. The immobilized laccase showed a half-life of 11.7 h at 60 °C, which was about 1.4-fold higher than that of the free enzyme. Meanwhile, Lac-hNFs retained 81% of the initial activity after incubation at 25 °C for 10 days. The laccase in combination with acetosyringone could efficiently decompose tetracycline, doxycycline, and tigecycline. More than 79% of the three TCs were transformed in 1 h. Compared with the free enzyme, Lac-hNFs demonstrated higher capacity in the removal of TCs. Furthermore, Lac-hNFs remained their high degradation capacity after five cycles of reuse. Bacterial growth inhibition test revealed that most of the toxicity of TCs was eliminated after Lac-hNFs treatment. The main transformation products were identified by LC-MS, and the possible degradation pathways were proposed. The interaction mechanism between laccase and TCs was also analyzed using molecular docking. This work provides an efficient way to remove toxic organic pollutants.


Assuntos
Cobre , Lacase , Lacase/metabolismo , Fosfatos , Simulação de Acoplamento Molecular , Tigeciclina , Ecossistema , Antibacterianos
2.
Bioprocess Biosyst Eng ; 44(4): 727-735, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33245440

RESUMO

Laccases are versatile oxidases that are capable of decolorizing various synthetic dyes. Recombinant Bacillus amyloliquefaciens laccase was immobilized as magnetic cross-linked enzyme aggregates (M-CLEAs) for application in dye decolorization. Several parameters influencing the activity recovery were evaluated during the synthesis of M-CLEAs. With ammonium sulfate as precipitant, maximum activity was recovered by cross-linking with 0.16% glutaraldehyde for 1 h. The prepared M-CLEAs exhibited improved activity under alkaline conditions. It remained 74% activity after incubation at 60 °C for 5 h. Enhanced tolerance towards NaCl was also observed for the M-CLEAs, with 68% activity remaining in the presence of 1 M NaCl. The immobilized laccase could rapidly decolorize more than 93% of reactive black 5 and indigo carmine in 1 h, while its catalytic efficiency towards reactive blue 19 was relatively low. After four cycles of consecutive reuse, the M-CLEAs could decolorize 92% of indigo carmine. The easy recovery and reusability of M-CLEAs facilitate the potential application of bacterial laccase in dye decolorization.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Biotecnologia/métodos , Corantes/química , Microbiologia Industrial/métodos , Lacase/química , Magnetismo , Sulfato de Amônio/química , Carmim/química , Catálise , Domínio Catalítico , Reagentes de Ligações Cruzadas , Enzimas Imobilizadas , Glutaral/química , Concentração de Íons de Hidrogênio , Índigo Carmim/química , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA