Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Toxicol Appl Pharmacol ; 483: 116833, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266874

RESUMO

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 µg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 µg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.


Assuntos
Arsênio , Arsenitos , Doenças Cardiovasculares , Efeitos Tardios da Exposição Pré-Natal , Humanos , Animais , Camundongos , Feminino , Gravidez , Arsênio/metabolismo , Arsenitos/toxicidade , Receptores de Progesterona , Exposição Materna/efeitos adversos , Remodelação Ventricular , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal/metabolismo
2.
Hum Mol Genet ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550363

RESUMO

Friedreich's ataxia (FRDA) is an inherited disorder caused by depletion of frataxin (FXN), a mitochondrial protein required for iron-sulfur cluster (ISC) biogenesis. Cardiac dysfunction is the main cause of death. Yet pathogenesis, and, more generally, how the heart adapts to FXN loss, remain poorly understood, though are expected to be linked to an energy deficit. We modified a transgenic (TG) mouse model of inducible FXN depletion that permits phenotypic evaluation of the heart at different FXN levels, and focused on substrate-specific bioenergetics and stress signaling. When FXN protein in the TG heart was 17% of normal, bioenergetics and signaling were not different from control. When, 8 weeks later, FXN was ~ 97% depleted in the heart, TG heart mass and cardiomyocyte cross-sectional area were less, without evidence of fibrosis or apoptosis. mTORC1 signaling was activated, as was the integrated stress response, evidenced by greater phosphorylation of eIF2α relative to total eIF2α, and decreased protein translation. We interpret these results to suggest that, in TG hearts, an anabolic stimulus was constrained by eIF2α phosphorylation. Cardiac contractility was maintained in the 97%-FXN-depleted hearts, possibly contributed by an unexpected preservation of ß-oxidation, though pyruvate oxidation was lower. Bioenergetics alterations were matched by changes in the mitochondrial proteome, including a non-uniform decrease in abundance of ISC-containing proteins. Altogether, these findings suggest that the FXN depleted heart can suppress a major ATP demanding process such as protein translation, which, together with some preservation of ß-oxidation, could be adaptive, at least in the short term.

3.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1044-L1054, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668419

RESUMO

The proton-sensing receptor, ovarian cancer G protein-coupled receptor (OGR1), has been shown to be expressed in airway smooth muscle (ASM) cells and is capable of promoting ASM contraction in response to decreased extracellular pH. OGR1 knockout (OGR1KO) mice are reported to be resistant to the asthma features induced by inhaled allergen. We recently described certain benzodiazepines as OGR1 activators capable of mediating both procontractile and prorelaxant signaling in ASM cells. Here we assess the effect of treatment with the benzodiazepines lorazepam or sulazepam on the asthma phenotype in wild-type (WT) and OGR1KO mice subjected to inhaled house dust mite (HDM; Dermatophagoides pteronyssius) challenge for 3 wk. In contrast to previously published reports, both WT and OGR1KO mice developed significant allergen-induced lung inflammation and airway hyperresponsiveness (AHR). In WT mice, treatment with sulazepam (a Gs-biased OGR1 agonist), but not lorazepam (a balanced OGR1 agonist), prevented allergen-induced AHR, although neither drug inhibited lung inflammation. The protection from development of AHR conferred by sulazepam was absent in OGR1KO mice. Treatment of WT mice with sulazepam also resulted in significant inhibition of HDM-induced collagen accumulation in the lung tissue. These findings suggest that OGR1 expression is not a requirement for development of the allergen-induced asthma phenotype, but OGR1 can be targeted by the Gs-biased OGR1 agonist sulazepam (but not the balanced agonist lorazepam) to protect from allergen-induced AHR, possibly mediated via suppression of chronic bronchoconstriction and airway remodeling in the absence of effects on airway inflammation.


Assuntos
Alérgenos/toxicidade , Asma/patologia , Hiper-Reatividade Brônquica/patologia , Broncoconstrição , Citocinas/metabolismo , Pneumonia/patologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Ansiolíticos/farmacologia , Asma/etiologia , Asma/metabolismo , Benzodiazepinas/farmacologia , Hiper-Reatividade Brônquica/etiologia , Hiper-Reatividade Brônquica/metabolismo , Feminino , Lorazepam/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pneumonia/etiologia , Pneumonia/metabolismo , Pyroglyphidae
4.
J Mol Cell Cardiol ; 136: 95-101, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31536744

RESUMO

TRIM72 is a membrane repair protein that protects against ischemia reperfusion (I/R) injury. We previously identified Cys144 (C144) on TRIM72 as a site of S-nitrosylation. To study the importance of C144, we generated a knock-in mouse with C144 mutated to a serine (TRIM72 C144S). We subjected ex vivo perfused mouse hearts to 20 min of ischemia followed by 90 min of reperfusion and observed less injury in TRIM72 C144S compared to WT hearts. Infarct size was smaller (54 vs 27% infarct size) and cardiac functional recovery (37 vs 62% RPP) was higher for the TRIM72 C144S mouse hearts. We also demonstrated that TRIM72 C144S hearts were protected against I/R injury using an in vivo LAD occlusion model. As TRIM72 has been reported to be released from muscle we tested whether C144 is involved in TRIM72 release. After I/R there was significantly less TRIM72 in the perfusate normalized to total released protein from the TRIM72 C144S compared to WT hearts, suggesting that C144 of TRIM72 regulates myocardial TRIM72 release during I/R injury. In addition to TRIM72's protective role in I/R injury, TRIM72 has also been implicated in cardiac hypertrophy and insulin resistance, and secreted TRIM72 has recently been shown to impair insulin sensitivity. However, insulin sensitivity (measured by glucose and insulin tolerance) of TRIM72 C144S mice was not impaired. Further, whole body metabolism, as measured using metabolic cages, was not different in WT vs TRIM72 C144S mice and we did not observe enhanced cardiac hypertrophy in the TRIM72 C144S mice. In agreement, protein levels of the TRIM72 ubiquitination targets insulin receptor ß, IRS1, and focal adhesion kinase were similar between WT and TRIM72 C144S hearts. Overall, these data indicate that mutation of TRIM72 C144 is protective during I/R and reduces myocardial TRIM72 release without impairing insulin sensitivity or enhancing the development of hypertrophy.


Assuntos
Cisteína/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Doença da Artéria Coronariana , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
5.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L894-L902, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724097

RESUMO

Ovarian cancer G protein-coupled receptor 1 (OGR1) is a recently deorphanized G protein-coupled receptor shown to signal in response to low extracellular pH (↓pHo) or certain benzodiazepines. The pleiotropic nature of OGR1 signaling in human airway smooth muscle (HASM) cells suggests that OGR1 is a potential therapeutic target for the management of obstructive lung diseases. However, the basic pharmacological and regulatory features of OGR1 remain poorly understood. We employed model systems of heterologously expressed [human embryonic kidney 293 (HEK293) cells] or endogenous (HASM) OGR1 to assess changes in expression, subcellular localization, and signaling capabilities following acute or chronic treatment with ↓pHo or the benzodiazepines lorazepam and sulazepam. In HEK293 cells expressing OGR1, treatment with ↓pHo and/or lorazepam, but not sulazepam, caused rapid OGR1 internalization. In HASM cells, acute treatment with ↓pHo or benzodiazepines did not alter abundance of OGR1 mRNA; however, significant downregulation was observed following chronic treatment. Acute and chronic pretreatment of HASM cells with sulazepam or lorazepam resulted in receptor desensitization as demonstrated by reduced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) or p42/p44 upon rechallenge. Acid (acute but not chronic) pretreatment of HASM cells induced desensitization of OGR1-mediated VASP (but not p42/p44) phosphorylation. In contrast to a recent study reporting OGR1 upregulation and sensitization in cardiac tissue subject to ischemic/acidic insult, chronic OGR1 activation in multiple model systems did not increase OGR1 expression or signaling capacity. The ability to induce OGR1 internalization and desensitization was activator dependent, reflecting the ability of different activators to induce specific receptor confirmations and engagement of specific heterotrimeric G proteins.


Assuntos
Sistema de Sinalização das MAP Quinases , Miócitos de Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Sistema Respiratório/metabolismo , Regulação para Cima , Animais , Moléculas de Adesão Celular/metabolismo , Feminino , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Lorazepam/farmacologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Miócitos de Músculo Liso/patologia , Fosfoproteínas/metabolismo , Sistema Respiratório/patologia
6.
Am J Physiol Heart Circ Physiol ; 308(1): H39-48, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25380814

RESUMO

Inflammation contributes significantly to cardiac dysfunction. Although the initial phase of inflammation is essential for repair and healing, excessive proinflammatory cytokines are detrimental to the heart. We found that adenine nucleotide translocator isoform-1 (ANT1) protein levels were significantly decreased in the inflamed heart of C57BL/6 mice following cecal ligation and puncture. To understand the molecular mechanisms involved, we performed small-interfering RNA-mediated knockdown of ANT1 and studied tumor necrosis factor-α (TNFα)-induced inflammatory responses in myocardium-derived H9c2 cells and cardiomyocytes. ANT1 knockdown significantly increased swollen mitochondria and mitochondrial reactive oxygen species, concomitant with increased TNFα-induced NF-κB reporter gene activity and interleukin-6 and TNFα expression. A mitochondrial-targeted antioxidant mito-TEMPO attenuated TNFα-induced mitochondrial reactive oxygen species, NF-κB reporter gene activity, and cytokine expression in ANT1 knockdown cells. Interestingly, TNFα or lipopolysaccharide (LPS) treatment significantly decreased ANT1 protein levels, suggesting a feed-forward regulation of proinflammatory cytokine expression activated by ANT1 downregulation. These data suggest that ANT1 downregulation contributes to cardiac inflammation post-cecal ligation and puncture. Preventing ANT1 downregulation could provide a novel molecular target to temper cardiac inflammation.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Genes Reporter , Inflamação/sangue , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/imunologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Dilatação Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Transfecção
7.
Circ Res ; 113(10): 1117-27, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24014830

RESUMO

RATIONALE: Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. MicroRNAs (miRNAs) have emerged as important regulators for VSMC function, and we recently identified miR-663 as critical for controlling human aortic smooth muscle cell proliferation. OBJECTIVE: To investigate whether miR-663 plays a role in human VSMC phenotypic switch and the development of neointima formation. METHODS AND RESULTS: By using quantitative reverse-transcription polymerase chain reaction, we found that miR-663 was significantly downregulated in human aortic VSMCs on platelet-derived growth factor treatment, whereas expression was markedly increased during VSMC differentiation. Furthermore, we demonstrated that overexpression of miR-663 increased expression of VSMC differentiation marker genes, such as smooth muscle 22α, smooth muscle α-actin, calponin, and smooth muscle myosin heavy chain, and potently inhibited platelet-derived growth factor-induced VSMC proliferation and migration. We identified the transcription factor JunB and myosin light chain 9 as downstream targets of miR-663 in human VSMCs, because overexpression of miR-663 markedly inhibited expression of JunB and its downstream molecules, such as myosin light chain 9 and matrix metalloproteinase 9. Finally, we showed that adeno-miR-663 markedly suppressed the neointimal lesion formation by ≈50% in mice after vascular injury induced by carotid artery ligation, specifically via decreased JunB expression. CONCLUSIONS: These results indicate that miR-663 is a novel modulator of human VSMC phenotypic switch by targeting JunB/myosin light chain 9 expression. These findings suggest that targeting miR-663 or its specific downstream targets in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.


Assuntos
Aorta/citologia , Diferenciação Celular/fisiologia , MicroRNAs/fisiologia , Músculo Liso Vascular/citologia , Neointima/fisiopatologia , Fenótipo , Actinas/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Artérias Carótidas/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Técnicas In Vitro , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Modelos Animais , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Calponinas
8.
Sci Adv ; 10(19): eadh0798, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718107

RESUMO

Mutations in the LMNA gene encoding lamins A/C cause an array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis underlying cardiac dysfunction remains elusive. Using a novel conditional deletion model capable of translatome profiling, we observed that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Before cardiac dysfunction, Lmna-deleted cardiomyocytes displayed nuclear abnormalities, Golgi dilation/fragmentation, and CREB3-mediated stress activation. Translatome profiling identified MED25 activation, a transcriptional cofactor that regulates Golgi stress. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the Golgi. Systemic administration of modulators of autophagy or ER stress significantly delayed cardiac dysfunction and prolonged survival. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the LMNA cardiomyopathy development.


Assuntos
Cardiomiopatias , Lamina Tipo A , Miócitos Cardíacos , Membrana Nuclear , Animais , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , Membrana Nuclear/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Autofagia , Estresse Fisiológico , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Complexo de Golgi/metabolismo , Camundongos Knockout
9.
bioRxiv ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39386735

RESUMO

Cardiovascular disease is the leading cause of mortality in the US. Studies suggest a role for environmental exposures in the etiology of cardiovascular disease, including exposure to arsenic through drinking water. Arsenic exposure during pregnancy has been shown to have effects on offspring, but few studies have examined impacts on maternal cardiovascular health. While our prior work documented the detrimental effect of arsenic on the maternal heart during pregnancy, our current study examines the effect of gestational arsenic exposure on the maternal heart postpartum. Timed-pregnant wild-type (C57BL/6J) mice were exposed to 0, 100 or 1000 µg/L sodium arsenite (NaAsO2) via drinking water from embryonic day 2.5 (E2.5) until parturition. Postpartum heart structure and function was assessed via transthoracic echocardiography and gravimetric measurement. Hypertrophic markers were probed via qRT-PCR and western blot. Isolated cardiomyocyte Ca 2+ -handling and contraction were also assessed, and expression of proteins associated with Ca 2+ handling and contraction. Interestingly, we found that exposure to either 100 or 1000 µg/L sodium arsenite increased postpartum heart size at P12 vs. non-exposed postpartum controls. At the cellular level, we found altered cardiomyocyte Ca 2+ -handling and contraction. We also found altered expression of key contractile proteins, including α-Actin and cardiac myosin binding protein C (cMyBP-c). Together, these findings suggest that gestational arsenic exposure impacts the postpartum maternal heart, possibly inducing long-term cardiovascular changes. Furthermore, these findings highlight the importance of reducing arsenic exposure during pregnancy, and the need for more research on the impact of arsenic and other environmental exposures on maternal heart health and adverse pregnancy events. New & Noteworthy: Gestational exposure to sodium arsenite at environmentally relevant doses (100 and 1000 µg/L) increases postpartum heart size, and induces dysregulated Ca 2+ homeostasis and impaired shortening in isolated cardiomyocytes. This is the first study to demonstrate that gestational arsenic exposure impacts postpartum heart structure and function beyond the exposure period.

10.
Biochem Biophys Res Commun ; 431(3): 636-40, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23246467

RESUMO

Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.


Assuntos
Angiotensina II/metabolismo , RNA Helicases DEAD-box/metabolismo , Replicação do DNA , Músculo Liso Vascular/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Proliferação de Células , Células Cultivadas , RNA Helicases DEAD-box/genética , DNA/biossíntese , Fatores de Transcrição E2F/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , RNA Interferente Pequeno/genética , Ratos , Transcrição Gênica
11.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808684

RESUMO

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in-utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO 2 ) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that exposure to 1000 µg/L iAs abrogated normal physiologic growth of the maternal heart during late pregnancy and reduced transcript levels of estrogen receptor alpha (ERα), progesterone receptor membrane component 1 (Pgrmc1) and progesterone receptor membrane component 2 (Pgrmc2). Both 100 and 1000 µg/L iAs also reduced transcription of protein kinase B (Akt) and atrial natriuretic peptide (ANP). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.

12.
Life Sci ; 324: 121712, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37100378

RESUMO

AIMS: Cadmium exposure is a worldwide problem that has been linked to the development of cardiovascular disease. This study aimed to elucidate mechanistic details of chronic cadmium exposure on the structure and function of the heart. MAIN METHODS: Male and female mice were exposed to cadmium chloride (CdCl2) via drinking water for eight weeks. Serial echocardiography and blood pressure measurements were performed. Markers of hypertrophy and fibrosis were assessed, along with molecular targets of Ca2+-handling. KEY FINDINGS: Males exhibited a significant reduction in left ventricular ejection fraction and fractional shortening with CdCl2 exposure, along with increased ventricular volume at end-systole, and decreased interventricular septal thickness at end-systole. Interestingly, no changes were detected in females. Experiments in isolated cardiomyocytes revealed that CdCl2-induced contractile dysfunction was also present at the cellular level, showing decreased Ca2+ transient and sarcomere shortening amplitude with CdCl2 exposure. Further mechanistic investigation uncovered a decrease in sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein expression and phosphorylated phospholamban levels in male hearts with CdCl2 exposure. SIGNIFICANCE: The findings of our novel study provide important insight into how cadmium exposure may act as a sex-specific driver of cardiovascular disease, and further underscore the importance of reducing human exposure to cadmium.


Assuntos
Doenças Cardiovasculares , Função Ventricular Esquerda , Humanos , Camundongos , Masculino , Feminino , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Volume Sistólico , Doenças Cardiovasculares/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo
13.
iScience ; 26(10): 107990, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37829205

RESUMO

Hypereosinophilic syndrome is a progressive disease with extensive eosinophilia that results in organ damage. Cardiac pathologies are the main reason for its high mortality rate. A better understanding of the mechanisms of eosinophil-mediated tissue damage would benefit therapeutic development. Here, we describe the cardiac pathologies that developed in a mouse model of hypereosinophilic syndrome. These IL-5 transgenic mice exhibited decreased left ventricular function at a young age which worsened with age. Mechanistically, we demonstrated infiltration of activated eosinophils into the heart tissue that led to an inflammatory environment. Gene expression signatures showed tissue damage as well as repair and remodeling processes. Cardiomyocytes from IL-5Tg mice exhibited significantly reduced contractility relative to wild type (WT) controls. This impairment may result from the inflammatory stress experienced by the cardiomyocytes and suggest that dysregulation of contractility and Ca2+ reuptake in cardiomyocytes contributes to cardiac dysfunction at the whole organ level in hypereosinophilic mice.

14.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36824975

RESUMO

Mutations in the LMNA gene encoding nuclear lamins A/C cause a diverse array of tissue-selective diseases, with the heart being the most commonly affected organ. Despite progress in understanding the molecular perturbations emanating from LMNA mutations, an integrative understanding of the pathogenesis leading to cardiac dysfunction remains elusive. Using a novel cell-type specific Lmna deletion mouse model capable of translatome profiling, we found that cardiomyocyte-specific Lmna deletion in adult mice led to rapid cardiomyopathy with pathological remodeling. Prior to the onset of cardiac dysfunction, lamin A/C-depleted cardiomyocytes displayed nuclear envelope deterioration, golgi dilation/fragmentation, and CREB3-mediated golgi stress activation. Translatome profiling identified upregulation of Med25, a transcriptional co-factor that can selectively dampen UPR axes. Autophagy is disrupted in the hearts of these mice, which can be recapitulated by disrupting the golgi or inducing nuclear damage by increased matrix stiffness. Systemic administration of pharmacological modulators of autophagy or ER stress significantly improved the cardiac function. These studies support a hypothesis wherein stress responses emanating from the perinuclear space contribute to the development of LMNA cardiomyopathy. Teaser: Interplay of stress responses underlying the development of LMNA cardiomyopathy.

15.
Biochem Biophys Res Commun ; 420(3): 511-5, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22446327

RESUMO

Bcr is a serine/threonine kinase that is a critical regulator of vascular smooth muscle cell inflammation and proliferation. We have previously demonstrated that Bcr acts in part via phosphorylation and inhibition of PPARγ. We have identified the RNA helicase UAP56 as another substrate of Bcr. In this report we demonstrate that knockdown of UAP56 blocks Bcr induced DNA synthesis in vascular smooth muscle cells (VSMC). We also found that over expression of Bcr increased the expression of cyclin E and decreased the expression of p27. Knockdown of UAP56 reversed the effect of Bcr on cyclin E and p27 expression. Furthermore, we found that Bcr binds to UAP56 and demonstrate that binding of UAP56 to Bcr is critical for Bcr induced DNA synthesis in VSMC. Our data identify UAP56 as an important binding partner of Bcr and a novel target for inhibiting vascular smooth muscle cell proliferation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Replicação do DNA , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Proteínas Ativadoras de GTPase , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Ratos
16.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099033

RESUMO

Gene mutations causing loss of dystrophin result in the severe muscle disease known as Duchenne muscular dystrophy (DMD). Despite efforts at genetic repair, DMD therapy remains largely palliative. Loss of dystrophin destabilizes the sarcolemmal membrane, inducing mechanosensitive cation channels to increase calcium entry and promote cell damage and, eventually, muscle dysfunction. One putative channel is transient receptor potential canonical 6 (TRPC6); we have shown that TRPC6 contributed to abnormal force and calcium stress-responses in cardiomyocytes from mice lacking dystrophin that were haplodeficient for utrophin (mdx/utrn+/- [HET] mice). Here, we show in both the HET mouse and the far more severe homozygous mdx/utrn-/- mouse that TRPC6 gene deletion or its selective pharmacologic inhibition (by BI 749327) prolonged survival 2- to 3-fold, improving skeletal and cardiac muscle and bone defects. Gene pathways reduced by BI 749327 treatment most prominently regulated fat metabolism and TGF-ß1 signaling. These results support the testing of TRPC6 inhibitors in human trials for other diseases as a novel DMD therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Utrofina/genética , Utrofina/metabolismo
17.
Circ Res ; 104(1): 69-78, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023129

RESUMO

Bcr is a serine/threonine kinase activated by platelet-derived growth factor that is highly expressed in the neointima after vascular injury. Here, we demonstrate that Bcr is an important mediator of angiotensin (Ang) II and platelet-derived growth factor-mediated inflammatory responses in vascular smooth muscle cells (VSMCs). Among transcription factors that might regulate Ang II-mediated inflammatory responses we found that ligand-mediated peroxisome proliferator-activated receptor (PPAR)gamma transcriptional activity was significantly decreased by Ang II. Ang II increased Bcr expression and kinase activity. Overexpression of Bcr significantly inhibited PPARgamma activity. In contrast, knockdown of Bcr using Bcr small interfering RNA and a dominant-negative form of Bcr (DN-Bcr) reversed Ang II-mediated inhibition of PPARgamma activity significantly, suggesting the critical role of Bcr in Ang II-mediated inhibition of PPARgamma activity. Point-mutation and in vitro kinase analyses showed that PPARgamma was phosphorylated by Bcr at serine 82. Overexpression of wild-type Bcr kinase did not inhibit ligand-mediated PPARgamma1 S82A mutant transcriptional activity, indicating that Bcr regulates PPARgamma activity via S82 phosphorylation. DN-Bcr and Bcr small interfering RNA inhibited Ang II-mediated nuclear factor kappaB activation in VSMCs. DN-PPARgamma reversed DN-Bcr-mediated inhibition of nuclear factor kappaB activation, suggesting that PPARgamma is downstream from Bcr. Intimal proliferation in low-flow carotid arteries was decreased in Bcr knockout mice compared with wild-type mice, suggesting the critical role of Bcr kinase in VSMC proliferation in vivo, at least in part, via regulating PPARgamma/nuclear factor kappaB transcriptional activity.


Assuntos
Angiotensina II/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcr/fisiologia , Angiotensina II/farmacologia , Animais , Ativação Enzimática , Camundongos , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NF-kappa B/genética , NF-kappa B/fisiologia , PPAR gama/agonistas , PPAR gama/fisiologia , Fosforilação , Fosfosserina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Mutação Puntual , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcr/deficiência , Proteínas Proto-Oncogênicas c-bcr/genética , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Túnica Íntima/enzimologia , Túnica Íntima/patologia , Vasculite/fisiopatologia
18.
Biochem Biophys Res Commun ; 393(1): 106-10, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20116367

RESUMO

UAP56, an ATP dependent RNA helicase that also has ATPase activity, is a DExD/H box protein that is phylogenetically grouped with the eukaryotic initiation factor eIF4A, the prototypical member of the DExD/H box family of helicases. UAP56, also known as BAT1, is an essential RNA splicing factor required for spliceosome assembly and mRNA export but its role in protein synthesis is not known. Here we demonstrate that UAP56 regulates protein synthesis and growth in cardiomyocytes. We found that wild-type (WT) UAP56 increased serum induced protein synthesis in HeLa cells. UAP56 mutants lacking ATPase and/or helicase activity inhibited protein synthesis compared with WT UAP56, suggesting that the ATPase and RNA helicase activity of UAP56 is important for protein synthesis. UAP56 siRNA inhibited phenylephrine (PE) induced protein synthesis in cardiomyocytes and inhibited PE induced cardiomyocyte hypertrophy. Our data demonstrate that UAP56 is an important regulator of protein synthesis and plays an important role in the regulation of cardiomyocyte growth.


Assuntos
Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Miócitos Cardíacos/fisiologia , Biossíntese de Proteínas , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , Células HeLa , Humanos , Mutação , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Clin Med ; 9(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255451

RESUMO

Physiological stressors, such as exercise, can precipitate sudden cardiac death or heart failure progression in patients with arrhythmogenic cardiomyopathy (ACM). Yet, whether and to what extent a highly prevalent and more elusive environmental factor, such as psychosocial stress (PSS), can also increase ACM disease progression is unexplored. Here, we first quantified perceived stress levels in patients with ACM and found these levels correlated with the extent of arrhythmias and cardiac dysfunction. To determine whether the observed correlation is due to causation, we inflicted PSS-via the resident-intruder (RI) paradigm-upon Desmoglein-2 mutant mice, a vigorously used mammalian model of ACM. We found that ACM mice succumbed to abnormally high in-trial, PSS mortality. Conversely, no sudden deaths occurred in wildtype (WT) counterparts. Desmoglein-2 mice that survived RI challenge manifested markedly worse cardiac dysfunction and remodeling, namely apoptosis and fibrosis. Furthermore, WT and ACM mice displayed similar behavior at baseline, but Desmoglein-2 mice exhibited heightened anxiety following RI-induced PSS. This outcome correlated with the worsening of cardiac phenotypes. Our mouse model demonstrates that in ACM-like subjects, PSS is incisive enough to deteriorate cardiac structure and function per se, i.e., in the absence of any pre-existing anxious behavior. Hence, PSS may represent a previously underappreciated risk factor in ACM disease penetrance.

20.
Sci Signal ; 12(597)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481522

RESUMO

Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (TH2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks TH2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms. Targeted deletion of DGKζ in T cells decreased type 2 inflammation without reducing AHR. In contrast, loss of DGKζ in airway smooth muscle cells decreased AHR but not airway inflammation. T cell-specific enhancement of ERK signaling was only sufficient to limit type 2 airway inflammation, not AHR. Pharmacological inhibition of DGK diminished both airway inflammation and AHR in mice and also reduced bronchoconstriction of human airway samples in vitro. These data suggest that DGK is a previously unrecognized therapeutic target for asthma and reveal that the inflammatory and AHR components of asthma are not as interdependent as generally believed.


Assuntos
Asma/imunologia , Diacilglicerol Quinase/imunologia , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Asma/enzimologia , Asma/genética , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/genética , Broncoconstrição/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/imunologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Hipersensibilidade Respiratória/enzimologia , Hipersensibilidade Respiratória/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th2/efeitos dos fármacos , Células Th2/enzimologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA