Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971970

RESUMO

MOTIVATION: In the field of pharmacochemistry, it is a time-consuming and expensive process for the new drug development. The existing drug design methods face a significant challenge in terms of generation efficiency and quality. RESULTS: In this paper, we proposed a novel molecular generation strategy and optimization based on A2C reinforcement learning. In molecular generation strategy, we adopted transformer-DNN to retain the scaffolds advantages, while accounting for the generated molecules' similarity and internal diversity by dynamic parameter adjustment, further improving the overall quality of molecule generation. In molecular optimization, we introduced heterogeneous parallel supercomputing for large-scale molecular docking based on message passing interface communication technology to rapidly obtain bioactive information, thereby enhancing the efficiency of drug design. Experiments show that our model can generate high-quality molecules with multi-objective properties at a high generation efficiency, with effectiveness and novelty close to 100%. Moreover, we used our method to assist shandong university school of pharmacy to find several candidate drugs molecules of anti-PEDV. AVAILABILITY AND IMPLEMENTATION: The datasets involved in this method and the source code are freely available to academic users at https://github.com/wq-sunshine/MomdTDSRL.git.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Software
2.
Biochem Biophys Res Commun ; 642: 167-174, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36584480

RESUMO

The Golgi apparatus is vital for protein modification and molecular trafficking. It is essential for nerve development and activity, and damage thereof is implicated in many neurological diseases. Primary familial brain calcification (PFBC) is a rare inherited neurodegenerative disease characterized by multiple brain calcifications. SLC20A2, which encodes the inorganic phosphate transporter 2 (PiT-2) protein, is the main pathogenic gene in PFBC. The PiT-2 protein is a sodium-dependent phosphate type III transporter, and dysfunction leads to a deficit in the cellular intake of inorganic phosphate (Pi) and calcium deposits. Whether the impaired Golgi apparatus is involved in the PFBC procession requires elucidation. In this study, we constructed induced pluripotent stem cells (iPSCs) derived from two PFBC patients with different SLC20A2 gene mutations (c.613G > A or del exon10) and two healthy volunteers as dependable cell models for research on pathogenic mechanism. To study the mechanism, we differentiated iPSCs into neurons and astrocytes in vitro. Our study found disruptive Golgi structure and damaged autophagy in PFBC neurons with increased activity of mTOR. We also found damaged mitochondria and increased apoptosis in the PFBC dopaminergic neurons and astrocytes. In this study, we prove that dysfunctional PiT-2 leads to an imbalance of cellular Pi, which may disrupt the Golgi apparatus with impaired autophagy, mitochondria and apoptosis in PFBC. Our study provides a new avenue for understanding nerve damage and pathogenic mechanism in brain calcifications.


Assuntos
Calcinose , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fosfatos/metabolismo , Calcinose/metabolismo , Complexo de Golgi/metabolismo , Mutação , Encéfalo/metabolismo
3.
Platelets ; 34(1): 2157381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36597012

RESUMO

High-altitude polycythemia (HAPC) can occur in individuals who are intolerant to high-altitude hypoxia. In patients with HAPC, erythrocytosis is often accompanied by a decrease in platelet count. Chronic hypoxia can increase the incidence of arteriovenous thrombosis and the risk of bleeding during antithrombotic treatment due to thrombocytopenia; therefore, understanding the cause of thrombocytopenia can reduce the risk of treatment-related bleeding. In this study, we examined platelet production and apoptosis to understand the cause of thrombocytopenia in patients with HAPC. The classification of myeloid-derived megakaryocytes (MKs) in HAPC patients was mainly granular MKs rather than mature MKs, suggesting impaired differentiation and maturation. However, the total number of MKs and newly generated reticulated platelets in the peripheral blood increased, indicating sufficient platelet generation in HAPC thrombocytopenia. Increased platelet apoptosis may be one of the causes of thrombocytopenia. Platelet activation and GP1bα pathway activation induced by thrombin and von Willebrand factor can lead to platelet apoptosis. Platelet production was not reduced in patients with HAPC, whereas platelet apoptosis was associated with thrombocytopenia. These findings provide a rationale for considering the bleeding risk in HAPC patient while treating thrombotic diseases.


What is the context?Platelets are essential in the process of blood clotting; hence, low platelet count increases the risk of bleeding. Thrombocytopenia is present in patients with high-altitude polycythemiaHypoxia can lead to platelet activation and increase in procoagulant factors, while at the same time increase the risk of thrombosis due to erythrocytosis and blood stasis.Antithrombotic therapy should be administered when thrombosis occurs in patients with high altitude polycythemia; however, due to the low platelet count, risk of bleeding must be considered.What is new?In this study, we found that platelet production was not decreased in patients with high-altitude polycythemia.One cause of thrombocytopenia is apoptosis, which is associated with platelet activation, especially GP1bα activation.Inhibition of GP1bα binding to ligand decreased the level of platelet apoptosis.What is the impact?This study provides novel insights into antithrombotic therapy for patients with high-altitude polycythemia complicated by thrombosis.Thrombocytopenia is associated with excessive apoptosis.Interfering with GP1bα targets may have a dual benefit, both in inhibiting thrombosis and avoiding thrombocytopenia.


Assuntos
Doença da Altitude , Policitemia , Trombocitopenia , Humanos , Doença da Altitude/complicações , Doença da Altitude/metabolismo , Policitemia/complicações , Altitude , Hipóxia/complicações , Trombocitopenia/complicações
4.
Arch Gynecol Obstet ; 308(6): 1871-1879, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740794

RESUMO

OBJECTIVE: Quantitative real-time PCR (qPCR) is used to detect the differential expression of circular RNAs in patients of premature ovarian insufficiency (POI), to explore the new biomarkers of POI that can be detected from blood as soon as possible. METHODS: The study collected plasma samples from 30 patients in POI group and 30 normal people group who meet the inclusion criteria, who visited the gynecology clinic of The First Affiliated Hospital of Guangzhou University of Chinese Medicine from July 2019 to December 2020. Then, circRNAs in plasma were extracted for qPCR validation. RESULTS: 1. qPCR technology was performed on hsa_circRNA_008901 and hsa_circRNA_403959, and it was found that the levels of both were considerably downregulated in POI group. Clinical evaluation showed that both hsa_circRNA_008901 and hsa_circRNA_403959 have good diagnostic value for POI. 2. According to miRNA Regulatory Element (MRE) analysis, the predicted target miRNAs of hsa_circRNA_008901 are: hsa-miR-548c-3p, hsa-miR-924, hsa-miR-4677-5p, hsa-miR-6786-3p and hsa-miR-7974; the predicted target miRNAs of hsa_circRNA_403959 are: hsa-miR-1207-5p, hsa-miR-4691-5p, hsa-miR-4763-3p, hsa-miR-6807-5p and hsa-miR-7160-5p. CONCLUSION: Compared with the normal group, the expression levels of hsa_circRNA_008901 and hsa_circRNA_403959 in the POI group were downregulated, suggesting that these two circRNAs may be potential biomarkers of POI. Bioinformatics analysis indicated that hsa_circRNA_008901 and hsa_circRNA_403959 may regulate their binding miRNA through the action form of "molecular sponge", and then regulate the signaling pathway regulated by miRNA, and ultimately affect the disease progression of POI.


Assuntos
MicroRNAs , Insuficiência Ovariana Primária , Feminino , Humanos , RNA Circular/genética , MicroRNAs/genética , Biomarcadores , Transdução de Sinais , Insuficiência Ovariana Primária/genética
5.
J Transl Med ; 20(1): 497, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324154

RESUMO

BACKGROUND: To explore the roles of Annexin A2 (ANXA2) on hepatocyte pyroptosis and hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and underlying molecular mechanism. METHODS: Bioinformatics analyses were performed on transcriptome data of liver tissues from mice and patients with liver fibrosis for screening the hepatocyte pyroptosis-related differential genes. The in vivo NASH mouse model and in vitro NASH cellular model were established. The expression levels of Anxa2/ANXA2 were quantified. Then, the upstream transcription factor of Anxa2 was screened by ChIP-Seq and experimentally verified. The effects of the p-STAT3/ANXA2 axis on Caspase-1 mediated pyroptosis and fibrosis were explored by in vivo and in vitro experiments. RESULTS: Bioinformatics analyses suggested that the expression of Anxa2/ANXA2 was significantly up-regulated in liver tissues of both NASH mice and patients scoring with high pyroptotic activity. Experimental data showed that the ANXA2 expression was positively associated with the development of hepatocyte pyroptosis and fibrosis. As a transcription factor of ANXA2, p-STAT3 can bind to the promoter of Anxa2 and promote its transcription. The inhibition of p-STAT3 can significantly suppress hepatocyte pyroptosis and fibrosis, which was significantly reversed after the over-expression of Anxa2. Caspase-1 was verified as the player of the p-STAT3/ANXA2 axis to promote pyroptosis and fibrosis. By specifically inhibiting Caspase-1, the promotion effect of the p-STAT3/ANXA2 axis on pyroptosis and fibrosis can be significantly weakened. CONCLUSION: The p-STAT3 promoted Anxa2 expression at the transcription level, thus activating the Caspase-1 mediated hepatocyte pyroptosis and fibrosis in NASH.


Assuntos
Anexina A2 , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Anexina A2/metabolismo , Anexina A2/farmacologia , Caspase 1/metabolismo , Caspase 1/farmacologia , Fibrose , Hepatócitos/patologia , Fígado/patologia , Cirrose Hepática/complicações , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Piroptose
6.
J Immunol ; 202(4): 1124-1136, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30651340

RESUMO

Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Janus Quinases/imunologia , Células-Tronco Mesenquimais/imunologia , Fatores de Transcrição STAT/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD4/imunologia , Células Cultivadas , Feminino , Doença Enxerto-Hospedeiro/terapia , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Janus Quinases/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/citologia , Placenta/imunologia , Gravidez , Fatores de Transcrição STAT/metabolismo
7.
Gynecol Endocrinol ; 37(4): 342-348, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33480297

RESUMO

OBJECTIVE: To investigate the therapeutic effects of PERK activator CCT020312 (CCT) on inflammation-mediated osteoporosis (IMO) in ovariectomized rats. METHODS: Rats were divided into Sham, IMO, IMO + 1 mg/kg CCT and IMO + 2 mg/kg CCT groups. IMO models were constructed by bilateral ovariectomy (OVX) on 1st day followed by injection with magnesium silicate (Talc) on the 59th day. Sham rats did not undergo OVX surgery and were injected with saline instead of Talc. From 60th to 79th day, rats were treated with DMSO (vehicle control) in the Sham and IMO groups, and 1 or 2 mg/kg CCT020312 in treatment groups. Osteopontin (OPN), osteocalcin (OCN), tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide of type I collagen (CTX-I), and pro-inflammatory factors were measured on the 80th day. ProdigyDEXA was used to evaluate bone mineral density and content (BMD/BMC). Bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number (Tb.N), and trabecular separation (Tb.Sp) was assessed using 3D micro-CT scanner. RESULTS: CCT up-regulated Conn.D, BV/TV, and Tb.N, but down-regulated Tb.Sp in IMO rats. Besides, the declined femoral BMD and BMC in IMO rats were elevated after CCT treatment. Besides, IMO rats represented declined OPN and OCN, as well as increased TRAP, CTX-I, and pro-inflammatory factors, whereas those in the treatment groups were ameliorated regarding these indexes, with 2 mg/kg CCT showing better effect. CONCLUSION: PERK activator CCT020312 can be served as a new therapeutic option for the protection against bone loss in the OVX rat model associated with inflammation probably by manipulating inflammatory factors.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Ovariectomia , eIF-2 Quinase , Absorciometria de Fóton , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Humanos , Imageamento Tridimensional , Inflamação/metabolismo , Tamanho do Órgão , Osteocalcina/efeitos dos fármacos , Osteocalcina/metabolismo , Osteopontina/efeitos dos fármacos , Osteopontina/metabolismo , Osteoporose Pós-Menopausa/diagnóstico por imagem , Osteoporose Pós-Menopausa/metabolismo , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Ratos , Fosfatase Ácida Resistente a Tartarato/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Microtomografia por Raio-X
8.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830015

RESUMO

Coronaviruses cause diseases in humans and livestock. The SARS-CoV-2 is infecting millions of human beings, with high morbidity and mortality worldwide. The main protease (Mpro) of coronavirus plays a pivotal role in viral replication and transcription, which, in theory, is an attractive drug target for antiviral drug development. It has been extensively discussed whether Xanthohumol is able to help COVID-19 patients. Here, we report that Xanthohumol, a small molecule in clinical trials from hops (Humulus lupulus), was a potent pan-inhibitor for various coronaviruses by targeting Mpro, for example, betacoronavirus SARS-CoV-2 (IC50 value of 1.53 µM), and alphacoronavirus PEDV (IC50 value of 7.51 µM). Xanthohumol inhibited Mpro activities in the enzymatical assays, while pretreatment with Xanthohumol restricted the SARS-CoV-2 and PEDV replication in Vero-E6 cells. Therefore, Xanthohumol is a potent pan-inhibitor of coronaviruses and an excellent lead compound for further drug development.


Assuntos
Proteases Virais 3C/antagonistas & inibidores , Flavonoides/química , Propiofenonas/química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Alphacoronavirus/enzimologia , Alphacoronavirus/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , COVID-19/virologia , Domínio Catalítico , Chlorocebus aethiops , Coronavirus/enzimologia , Coronavirus/fisiologia , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Propiofenonas/metabolismo , Propiofenonas/farmacologia , Propiofenonas/uso terapêutico , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Células Vero , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
9.
Small ; 16(15): e1902860, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31468709

RESUMO

In situ monitoring of hydrogen peroxide (H2 O2 ) during its production process is needed. Here, an electrochemical H2 O2 sensor with a wide linear current response range (concentration: 5 × 10-8 to 5 × 10-2 m), a low detection limit (32.4 × 10-9 m), and a high sensitivity (568.47 µA mm-1 cm-2 ) is developed. The electrocatalyst of the sensor consists of cobalt nanoparticles and atomic Co-Nx moieties anchored on nitrogen doped carbon nanotube arrays (Co-N/CNT), which is obtained through the pyrolysis of the sandwich-like urea@ZIF-67 complex. More cobalt nanoparticles and atomic Co-Nx as active sites are exposed during pyrolysis, contributing to higher electrocatalytic activity. Moreover, a portable screen-printed electrode sensor is constructed and demonstrated for rapidly detecting (cost ≈40 s) H2 O2 produced in microbial fuel cells with only 50 µL solution. Both the synthesis strategy and sensor design can be applied to other energy and environmental fields.

10.
Cell Immunol ; 352: 104113, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331794

RESUMO

Human placenta-derived mesenchymal stromal cells (hPMSCs) are promising candidates for the treatment of graft-versus-host disease (GVHD), which is associated with high IL-1ß levels. In this study, the effects of IL-1ß and hPMSCs on each other were investigated by analyzing the proportion of Th1, Th2 and CD4+IL-10+ T cells and PD-L1 expression, as well as the adhesion, migration, and proliferation of hPMSCs. The results showed that hPMSCs decreased IL-1ß levels and downregulated Th1/Th2 and Th1/CD4+IL-10+ T cells ratios in the GVHD model. The in vitro results revealed that IL-1ß strengthened the hPMSCs capacity to reduce the Th1/Th2 and Th1/CD4+IL-10+ T cell ratios, inhibited the adhesion and proliferation of hPMSCs and increased PD-L1 expression on hPMSCs via the JAK and NF-κB pathways. Overall, these findings suggested that hPMSCs alleviate GVHD by decreasing IL-1ß level and maintaining the balance among different T cell subsets. IL-1ß enhanced the ability of hPMSCs to balance different T cell subsets and inhibited hPMSCs adhesion and proliferation by regulating PD-L1 expression via the JAK and NF-κB pathways.


Assuntos
Antígeno B7-H1/imunologia , Interleucina-1beta/imunologia , Células-Tronco Mesenquimais/imunologia , Placenta/imunologia , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Adesão Celular/imunologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/citologia , Placenta/metabolismo , Gravidez , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
11.
Invest New Drugs ; 38(4): 1003-1011, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31612426

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway plays a vital role in immunity, cell division, cell death and tumor formation. Disrupted JAK-STAT signaling may lead to various diseases, especially cancer and immune disorders. Because of its importance, this signaling pathway has received significant attention from the pharmaceutical and biotechnology industries as a therapeutic target for drug design. However, few JAK or STATs inhibitors have been developed for cancer treatment. We used an in vitro STAT3 luciferase reporter assay to find novel inhibitors that could effectively block the JAK-STAT pathway. In our study, we screened 16,081 drug-like chemicals and found that atopaxar hydrobromide (AHB) is a specific inhibitor of JAK-STAT3 signaling. Our results suggest that AHB not only blocks constitutively activated and cytokine-induced STAT3 phosphorylation but also inhibits JAK1 and JAK2 phosphorylation. Moreover, AHB induces G1 phase cell cycle arrest, which stops cancer cell growth and induces apoptosis. AHB also inhibited tumor cell growth in vivo. In conclusion, AHB is a potential inhibitor that could be developed as a JAK-STAT pathway drug.


Assuntos
Antineoplásicos/farmacologia , Iminas/farmacologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/farmacologia , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
12.
Invest New Drugs ; 38(2): 311-320, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31087223

RESUMO

The Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays central roles in cancer cell growth and survival. Drug repurposing strategies have provided a valuable approach for developing antitumor drugs. Zelnorm (tegaserod maleate) was originally designed as an agonist of 5-hydroxytryptamine 4 receptor (5-HT4R) and approved by the FDA for treating irritable bowel syndrome with constipation (IBS-C). Through the use of a high-throughput drug screening system, Zelnorm was identified as a JAK/STAT3 signaling inhibitor. Moreover, the inhibition of STAT3 phosphorylation by Zelnorm was independent of its original target 5-HT4R. Zelnorm could cause G1 cell cycle arrest, induce cell apoptosis and inhibit the growth of a variety of cancer cells. The present study identifies Zelnorm as a novel JAK/STAT3 signaling inhibitor and reveals a new clinical application of Zelnorm upon market reintroduction.


Assuntos
Antineoplásicos/uso terapêutico , Indóis/uso terapêutico , Janus Quinases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Agonistas do Receptor 5-HT4 de Serotonina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Janus Quinases/metabolismo , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores 5-HT4 de Serotonina/genética , Fator de Transcrição STAT3/metabolismo , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
13.
Cell Physiol Biochem ; 51(5): 2172-2184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30537727

RESUMO

BACKGROUND/AIMS: Although red blood cells (RBCs) transfusions can be lifesaving, they are not without risk. RBCs storage is associated with the abnormal metabolism of glutathione (GSH), which may increase the risk of the oxidative damage of RBCs after transfusion. The responsible mechanisms remain unknown. METHODS: We determined the L-cysteine efflux and influx by evaluating the changes of free -SH concentrations in stored RBCs. The glutamate cysteine ligase (GCL) activities and protein content in stored RBCs was determined by fluorescence assay and western blotting. In addition, the glucose metabolism enzyme activity of RBCs was measured by spectrophotometric assay under in vitro incubation conditions. RESULTS: We found that both L-cysteine transport and GCL activity significantly declined, thereby inducing the dysfunction of GSH synthesis during blood storage, which could be attenuated by ATP supplement and DTT treatment. In addition, the glycometabolic enzyme (G6PDH, HK, PK and LDH) activity significantly decreased after 6 weeks storage. Oxidant stress-induced dysfunction in glucose metabolism was the driving force for decreased GSH synthesis during storage. CONCLUSION: These experimental findings reflect an underlying molecular mechanism that oxidant stress induced glucose metabolism dysfunction contribute to decreased GSH synthesis in stored RBCs.


Assuntos
Preservação de Sangue , Eritrócitos/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Trifosfato de Adenosina/metabolismo , Vias Biossintéticas , Preservação de Sangue/métodos , Cisteína/metabolismo , Contagem de Eritrócitos , Índices de Eritrócitos , Eritrócitos/citologia , Glutamato-Cisteína Ligase/metabolismo , Humanos , Adulto Jovem
14.
IUBMB Life ; 70(7): 678-690, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29727505

RESUMO

MicroRNAs (miRNAs) play key roles in the regulation of gene expression during multiple physiological processes, including early development, differentiation, and ageing. However, their involvement in age-related thymic involution is not clear. In this study, we profiled the global transcriptome and miRNAome of thymic epithelial cells in 1- and 3-month-old male and female mice, and predicted the possible transcription factors and target genes of the four most significantly differentially expressed miRNAs (DEMs) (miR-183-5p, miR-199b-5p, miR-205-5p, and miR-200b-3p) by performing bioinformatics analyses. We also evaluated the relationships between the significantly DEMs and mRNAs. We performed quantitative polymerase chain reaction to confirm the changes in the expression of the miRNAs and their predicted target genes. We found that miR-183-5p, miR-199b-5p, miR-205-5p, and miR-200b-3p can be used as a biomarker group for mouse thymus development and involution. In addition, the predicted target genes (Ptpn4, Slc2a9, Pkib, Pecam1, and Prkdc), which were identified by mRNA sequencing analysis, were mainly involved in growth, development, and accelerated senescence. In conclusion, miRNAs and their predicted target genes likely play important roles in thymus development and involution. To the best of our knowledge, this is the first study to systematically analyze the relevance of miRNAs and their targets by mRNA sequencing in mouse thymic epithelial cells. © 2018 IUBMB Life, 70(7):678-690, 2018.


Assuntos
Envelhecimento/genética , Células Epiteliais/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , Timo/citologia , Animais , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Timo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Cell Immunol ; 326: 42-51, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870404

RESUMO

We investigate the effects of interferon (IFN)-γ on human placenta-derived mesenchymal stromal cells (hPMSCs), in particular, their adhesion, proliferation and migration and modulatory effects on the CD4+CXCR5+Foxp3+Treg subset. And we compared hPMSCs ability to induce the generation of different Treg subsets in response to treatment with IFN-γ. We found that IFN-γ suppressed the proliferation and migration for hPMSCs. The ability of hPMSCs to induce the generation of CD4+CXCR5+Foxp3+Treg subset was enhanced by IFN-γ. And maximal effectiveness of IFN-γ treated hPMSCs upon inducing the generation of Treg subsets was for CD4+CXCR5+Foxp3+Treg subset as compared with that of CD4+CD25+Foxp3+, CD8+CD25+Foxp3+, CD4+IL-10+ and CD8+IL-10+Treg subsets. These results have important implications for the development and application of hPMSCs in clinical use.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Interferon gama/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores CXCR5/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Placenta/citologia , Gravidez , Linfócitos T Reguladores/metabolismo
16.
Mikrochim Acta ; 185(11): 501, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30302565

RESUMO

Core-shell structured particles were prepared from carbonized zeolitic imidazolate frameworks (ZIFs) and reduced graphene oxide (rGO). The particles possess a nitrogen content of up to 10.6%. The loss of nitrogen from the ZIF is avoided by utilizing the reduction and agglomeration of graphene oxide with suitable size (>2 µm) during pyrolysis. The resulting carbonized ZIF@rGO particles were deposited on a glassy carbon electrode to give an amperometric sensor for H2O2, typically operated at a voltage of -0.4 V (vs. Ag/AgCl). The sensor has a wide detection range (from 5 × 10-6 to 2 × 10-2 M), a 3.3 µM (S/N = 3) detection limit and a 0.272 µA·µM-1·cm-2 sensitivity, much higher than that of directly carbonized ZIFs. The sensor material was also deposited on a screen-printed electrode to explore the possibility of application. Graphical abstract Nitrogen doped carbon (NC) derived from carbonized zeolitic imidazolate frameworks is limited because of low nitrogen content. Here, nitrogen-rich NC@reduced graphene oxide (rGO) core-shell structured particles are described. The NC@rGO particles show distinctly better H2O2 detection performance than NC.

17.
Zhongguo Zhong Yao Za Zhi ; 43(17): 3477-3483, 2018 Sep.
Artigo em Zh | MEDLINE | ID: mdl-30347915

RESUMO

The aim of this study was to investigated the biological diversity, antibacterial activites and the plant growth-promoting traits of endophytic fungi of sandal (Santalum album), and to assess their potential in the development of antibacterial substances and rapid cultivation of sandal. The results of isolation and taxa analysis of endophytic fungi from sandal showed that 325 strains of endophytic fungi belonging to 16 genera of endophytic fungi were isolated from sandal (of which 86 from roots, 105 from stems and 134 from leaves). The isolation rate and colonization rate of endophytic fungi in different sandal parts showed the same pattern of change: leave>stems>roots. The diversity index of endophytic fungi in sandal roots was significantly higher than that of stems and leaves. The dominant endophytic fungi of sandal roots, stems and leaves showed significant differences. The dominant endophytic fungi of roots were Fusarium (50.00%) and Alternaria (10.47%), Alternaria (58.11%) and Acremonium (20.00%) for stems, and Pantoea (74.63%) for leaves. The antibacterial activity of 40 representative strains of sandal endophytic fungi were analyzed and the results showed that 90% of endophytic fungi exhibited inhibitory activity against at least one of the tested bacteria strains, and the strains with inhibitory activity to Escherichia coli, Enterobacter aerogenes, Shigella dysenteriae, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis accounted for 45.0%, 30%, 47.5%, 55%, 72.5%, and 62.5%, respectively. The sandal fungal endophytes with plant growth-promoting characteristics were screened, and 5 strains of endophytic fungi with phosphorus-solubilizing activity, 8 strains of endophytic fungi producing IAA, and 4 strains of endophytic fungi producing siderophores were found. Among them, endophytic fungus Monilia sp TXRF45 clould produced IAA and siderophores, and also show phosphate-solubilizing activity. The results indicated that the endophytic fungi of Sandal were rich in species diversity and their distribution had a certain tissue specificity. Some strains showed good antibacterial activity and growth-promoting properties, which could potentially applicable for the development of antibacterial substances and rapid cultivation of sandal.


Assuntos
Antibiose , Bactérias , Endófitos/química , Santalum/microbiologia , Sideróforos/química , Biodiversidade , Endófitos/classificação , Fungos/química , Fungos/classificação , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia
18.
BMC Infect Dis ; 14: 506, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25231540

RESUMO

BACKGROUND: Changes of miRNAs in exosome have been reported in different disease diagnosis and provided as potential biomarkers. In this study, we compared microRNA profile in exosomes in 5 MHFMD and 5 ESHFMD as well as in 5 healthy children. METHODS: Different expression of miRNAs in exosomes across all the three groups were screened using miRNA microarray method. Further validated test was conducted through quantitative real-time PCR assays with 54 exosome samples (18 ESHFMD, 18 MHFMD, and 18 healthy control). The judgment accuracy was then estimated by the receiver operating characteristic (ROC) curve analysis; and the specificity and sensitivity were evaluated by the multiple logistic regression analysis. RESULTS: There were 11 different miRNAs in exosomes of MHFMD and ESHFMD compared to healthy children, of which 4 were up-regulated and 7 were down-regulated. Further validation indicated that the 4 significant differentially expressed candidate miRNAs (miR-671-5p, miR-16-5p, miR-150-3p, and miR-4281) in exosome showed the same changes as in the microarray analysis, and the expression level of three miRNAs (miR-671-5p, miR-16-5p, and miR-150-3p) were significantly different between MHFMD or ESHFMD and the healthy controls. The accuracy of the test results were high with the under curve (AUC) value range from 0.79 to 1.00. They also provided a specificity of 72%-100% and a sensitivity of 78%-100%, which possessed ability to discriminate ESHFMD from MHFMD with the AUC value of 0.76-0.82. CONCLUSIONS: This study indicated that the exosomal miRNA from patients with different condition of HFMD express unique miRNA profiles. Exosomal miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping HFMD infections.


Assuntos
Exossomos/metabolismo , Doença de Mão, Pé e Boca/diagnóstico , MicroRNAs/genética , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Diagnóstico Diferencial , Exossomos/genética , Ontologia Genética , Doença de Mão, Pé e Boca/sangue , Doença de Mão, Pé e Boca/genética , Humanos , MicroRNAs/sangue , Anotação de Sequência Molecular , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Transcriptoma , Regulação para Cima
19.
Biomed Pharmacother ; 174: 116529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569275

RESUMO

Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.


Assuntos
Infarto do Miocárdio , Ácido Oleanólico/análogos & derivados , Receptores de Interleucina-8B , Saponinas , Animais , Saponinas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Masculino , Camundongos , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Ácido Oleanólico/farmacologia , Cardiotônicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
20.
Carbohydr Polym ; 329: 121795, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286559

RESUMO

Triple-negative breast cancer (TNBC) poses a serious threat to women's life and health due to its high malignancy, strong invasiveness, and propensity for early recurrence and metastasis. Therefore, there is an urgent need to develop a highly effective and low-toxic TNBC treatment scheme to enhance the anti-cancer efficacy and prolong the survival of patients. In this work, we designed and synthesized a chemodynamic therapy (CDT) agent (HA-Fc-Mal). The chemo/chemodynamic (CT/CDT) nanoparticle (HCM@DOX) based on hyaluronic acid induces ferroptosis and apoptotic for TNBC therapy was constructed via self-assembled of HA-Fc-Mal and doxorubicin (DOX). HCM@DOX orderly realized the TNBC targeting, controlled DOX release, GSH depletion and induce ROS erupt. In vivo and in vitro experiments confirmed that HCM@DOX inhibited the growth of 4 T1 tumors through ferroptosis and apoptosis, and the tumor inhibition rate was as high as 81.87 %. In addition, HCM@DOX significantly inhibited lung metastasis and exhibited excellent biosafety. Overall, our findings offer a new strategy for TNBC therapy using a CT/CDT nanoparticle that induces ferroptosis and apoptosis.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Ácido Hialurônico/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA