Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cancer Res ; 83(21): 3495-3497, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756567

RESUMO

Small-cell lung cancer (SCLC) is a neuroendocrine tumor type with limited treatment options and poor prognosis. SCLC comprises multiple molecular subtypes that are defined by the expression of the lineage-related transcription factors ASCL1, NEUROD1, POU2F3, and more controversially, YAP1. SCLC exhibits remarkable plasticity with the capacity to transition between molecular states; because these states are associated with unique therapeutic susceptibilities, SCLC has been likened to a moving therapeutic target. While MYC's role in driving the ASCL1-to-NEUROD1 (A-to-N) transition is established, additional mechanisms governing SCLC plasticity remain largely obscure. A recent study by Duplaquet and colleagues, published in Nature Cell Biology, employs an innovative genetically engineered mouse model of SCLC harboring loss of KDM6A-a histone lysine demethylase mutated in approximately 2% of SCLC cases. KDM6A loss in SCLC alters chromatin accessibility and increases the potential for A-to-N plasticity in vivo. Through characterization of the epigenetic landscape, Duplaquet and colleagues identified histone methylation as a key regulator of SCLC plasticity. These findings provide not only a new model system for studying SCLC plasticity, but also identify new epigenetic mechanisms involved, which will ultimately be critical for designing more effective therapies.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/patologia , Histona Desmetilases/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
2.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017742

RESUMO

Spitz neoplasms are a diverse group of molecularly and histologically defined melanocytic tumors with varying biologic potentials. The precise classification of Spitz neoplasms can be challenging. Recent studies have revealed recurrent fusions involving multiple kinases in a large proportion of Spitz tumors. In this study, we generated a transgenic zebrafish model of Spitz melanoma using a previously identified ZCCHC8-ROS1 fusion gene. Animals developed grossly apparent melanocytic proliferations as early as 3 weeks of age and overt melanoma as early as 5 weeks. By 7 weeks, ZCCHC8-ROS1 induced a histologic spectrum of neoplasms ranging from hyperpigmented patches to melanoma. Given the swift onset of these tumors during development, we extended this approach into adult fish using a recently described electroporation technique. Tissue-specific expression of ZCCHC8-ROS1 in adults led to melanocyte expansion without overt progression to melanoma. Subsequent electroporation with tissue-specific CRISPR, targeting only tp53 was sufficient to induce transformation to melanoma. Our model exhibits the use of sequential mutagenesis in the adult zebrafish, and demonstrates that ZCCHC8-ROS1 induces a spectrum of melanocytic lesions that closely mimics human Spitz neoplasms.


Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Neoplasias Cutâneas , Animais , Humanos , Melanoma/genética , Melanoma/patologia , Mutagênese , Nevo de Células Epitelioides e Fusiformes/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Peixe-Zebra/genética , Melanoma Maligno Cutâneo
3.
Blood Adv ; 5(13): 2673-2686, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34170284

RESUMO

Germline heterozygous mutations in GATA2 are associated with a syndrome characterized by cytopenias, atypical infections, and increased risk of hematologic malignancies. Here, we generated a zebrafish mutant of gata2b that recapitulated the myelomonocytopenia and B-cell lymphopenia of GATA2 deficiency syndrome. Using single-cell assay for transposase accessible chromatin with sequencing of marrow cells, we showed that loss of gata2b led to contrasting alterations in chromosome accessibility in early myeloid and lymphoid progenitors, associated with defects in gene expression. Within the myeloid lineage in gata2b mutant zebrafish, we identified an attenuated myeloid differentiation with reduced transcriptional priming and skewing away from the monocytic program. In contrast, in early lymphoid progenitors, gata2b loss led to accumulation of B-lymphoid transcription factor accessibility coupled with increased expression of the B-cell lineage-specification program. However, gata2b mutant zebrafish had incomplete B-cell lymphopoiesis with loss of lineage-specific transcription factor accessibility in differentiating B cells, in the context of aberrantly reduced oxidative metabolic pathways. Our results establish that transcriptional events in early progenitors driven by Gata2 are required to complete normal differentiation.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Deficiência de GATA2 , Animais , Fator de Transcrição GATA2 , Linfopoese , Fatores de Transcrição/genética , Proteínas de Xenopus , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA