Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Sens ; 9(6): 3115-3125, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38778463

RESUMO

Lactate is an important diagnostic and prognostic biomarker of several human pathological conditions, such as sepsis, malaria, and dengue fever. Unfortunately, due to the lack of reliable analytical decentralized platforms, the determination of lactate yet relies on discrete blood-based assays, which are invasive and inefficient and may cause tension and pain in the patient. Herein, we demonstrate the potential of a fully integrated microneedle (MN) sensing system for the minimally invasive transdermal detection of lactate in an interstitial fluid (ISF). The originality of this analytical technology relies on: (i) a strategy to provide a uniform coating of a doped polymer-based membrane as a diffusion-limiting layer on the MN structure, optimized to perform full-range lactate detection in the ISF (linear range of response: 0.25-35 mM, 30 s assay time, 8 h operation), (ii) double validation of ex vivo and in vivo results based on ISF and blood measurements in rats, (iii) monitoring of lactate level fluctuations under the administration of anesthesia to mimic bedside clinical scenarios, and (iv) in-house design and fabrication of a fully integrated and portable sensing device in the form of a wearable patch including a custom application and user-friendly interface in a smartphone for the rapid, routine, continuous, and real-time lactate monitoring. The main analytical merits of the lactate MN sensor include appropriate selectivity, reversibility, stability, and durability by using a two-electrode amperometric readout. The ex-vivo testing of the MN patch of preconditioned rat skin pieces and euthanized rats successfully demonstrated the accuracy in measuring lactate levels. The in vivo measurements suggested the existence of a positive correlation between ISF and blood lactate when a lag time of 10 min is considered (Pearson's coefficient = 0.85, mean difference = 0.08 mM). The developed MN-based platform offers distinct advantages over noncontinuous blood sampling in a wide range of contexts, especially where access to laboratory services is limited or blood sampling is not suitable. Implementation of the wearable patch in healthcare could envision personalized medicine in a variety of clinical settings.


Assuntos
Ácido Láctico , Agulhas , Ácido Láctico/análise , Ácido Láctico/sangue , Ácido Láctico/química , Animais , Ratos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Líquido Extracelular/química , Ratos Sprague-Dawley , Pele/química , Masculino , Humanos
2.
ACS Appl Mater Interfaces ; 15(4): 5600-5607, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563019

RESUMO

Degradable wearable electronics offer a promising route to construct sustainable cities and reduced carbon society. However, the difficult functionalization and the poor stability of degradable sensitive materials dramatically restrict their application in personalized healthcare assessment. Herein, we developed a scalable, low-cost, and porosity degradable MXene-polylactic acid textile (DMPT) for on-body biomonitoring via electrospinning. A combination of polydimethylsiloxane templating and MXene flake impregnation methods endows the fabricated DMPT with a sensitivity of 5.37/kPa, a fast response time of 98 ms, and a good mechanical stability (over 6000 cycles). An efficient degradation of as-electrospun DMPTs was observed in 1 wt % sodium carbonate solution. It is found that the incorporation of MXene nanosheets boosts the hydrophilicity and degradation efficiency of active polylactic acid nanofibrous films in comparison with the pristine counterpart. Furthermore, the as-received DMPT demonstrates great capability in monitoring physiological activities of wrist pulse, knuckle bending, swallowing, and vocalization. This work opens up a new paradigm for developing and optimizing high-performance degradable on-body electronics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Monitoramento Biológico , Têxteis
3.
Small Methods ; 6(2): e2101051, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174985

RESUMO

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Assuntos
Desenho de Equipamento/métodos , Determinação da Frequência Cardíaca/instrumentação , Dispositivos Eletrônicos Vestíveis , Análise de Elementos Finitos , Humanos , Microtecnologia , Poliuretanos/química , Titânio/química , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA