RESUMO
We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of â¼23 neuropeptide genes and â¼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.
Assuntos
Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Larva/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Motivos de Nucleotídeos/genética , RNA-Seq , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
RESUMO
Mitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 binding to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1, and metaxin2. We conclude that transport complexes containing kinesin-1 and RIC-7 polarize at the leading edge of mitochondria and are required for anterograde axonal transport in C. elegans.
Assuntos
Transporte Axonal , Cinesinas , Animais , Axônios , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismoRESUMO
Mitochondria transport is crucial for mitochondria distribution in axons and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 recruitment to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1 and metaxin2. We conclude that polarized transport complexes containing kinesin-1 and RIC-7 form at the leading edge of mitochondria, and that these complexes are required for anterograde axonal transport.
RESUMO
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Assuntos
Conectoma , Animais , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Expressão Gênica , SinapsesRESUMO
A recent and powerful technique is to obtain transcriptomes from rare cell populations, such as single neurons in Caenorhabditis elegans, by enriching dissociated cells using fluorescent sorting. However, these cell samples often have low yields of RNA that present challenges in library preparation. This can lead to PCR duplicates, noisy gene expression for lowly expressed genes, and other issues that limit endpoint analysis. Furthermore, some common resources, such as sequence-specific kits for removing ribosomal RNA, are not optimized for nonmammalian samples. To advance library construction for such challenging samples, we compared two approaches for building RNAseq libraries from less than 10 nanograms of C. elegans RNA: SMARTSeq V4 (Takara), a widely used kit for selecting poly-adenylated transcripts; and SoLo Ovation (Tecan Genomics), a newly developed ribodepletion-based approach. For ribodepletion, we used a custom kit of 200 probes designed to match C. elegans rRNA gene sequences. We found that SoLo Ovation, in combination with our custom C. elegans probe set for rRNA depletion, detects an expanded set of noncoding RNAs, shows reduced noise in lowly expressed genes, and more accurately counts expression of long genes. The approach described here should be broadly useful for similar efforts to analyze transcriptomics when RNA is limiting.
Assuntos
Caenorhabditis elegans , Poli A , Animais , Poli A/genética , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , RNA Ribossômico/genética , RNA/genéticaRESUMO
During nervous system development, postmitotic neurons face the challenge of generating and structurally organizing specific synapses with appropriate synaptic partners. An important unexplored question is whether the process of synaptogenesis is coordinated with the adoption of specific signaling properties of a neuron. Such signaling properties are defined by the neurotransmitter system that a neuron uses to communicate with postsynaptic partners, the neurotransmitter receptor type used to receive input from presynaptic neurons, and, potentially, other sensory receptors that activate a neuron. Elucidating the mechanisms that coordinate synaptogenesis, neuronal activation, and neurotransmitter signaling in a postmitotic neuron represents one key approach to understanding how neurons develop as functional units. Using the SAB class of Caenorhabditis elegans motor neurons as a model system, we show here that the phylogenetically conserved COE-type transcription factor UNC-3 is required for synaptogenesis. UNC-3 directly controls the expression of the ADAMTS-like protein MADD-4/Punctin, a presynaptically secreted synapse-organizing molecule that clusters postsynaptic receptors. UNC-3 also controls the assembly of presynaptic specializations and ensures the coordinated expression of enzymes and transporters that define the cholinergic neurotransmitter identity of the SAB neurons. Furthermore, synaptic output properties of the SAB neurons are coordinated with neuronal activation and synaptic input, as evidenced by UNC-3 also regulating the expression of ionotropic neurotransmitter receptors and putative stretch receptors. Our study shows how synaptogenesis and distinct, function-defining signaling features of a postmitotic neuron are hardwired together through coordinated transcriptional control.