Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 92(1): e0022923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099659

RESUMO

Legionella is a common intracellular parasitic bacterium that infects humans via the respiratory tract, causing Legionnaires' disease, with fever and pneumonia as the main symptoms. The emergence of highly virulent and azithromycin-resistant Legionella pneumophila is a major challenge in clinical anti-infective therapy. The CRISPR-Cas acquired immune system provides immune defense against foreign nucleic acids and regulates strain biological functions. However, the distribution of the CRISPR-Cas system in Legionella and how it regulates gene expression in L. pneumophila remain unclear. Herein, we assessed 915 Legionella whole-genome sequences to determine the distribution characteristics of the CRISPR-Cas system and constructed gene deletion mutants to explore the regulation of the system based on growth ability in vitro, antibiotic sensitivity, and intracellular proliferation of L. pneumophila. The CRISPR-Cas system in Legionella was predominantly Type II-B and was mainly concentrated in the genome of L. pneumophila ST1 strains. The Type II-B CRISPR-Cas system showed no effect on the strain's growth ability in vitro but significantly reduced resistance to azithromycin and decreased proliferation ability due to regulation of the lpeAB efflux pump and the Dot/Icm type IV secretion system. Thus, the Type II-B CRISPR-Cas system plays a crucial role in regulating the virulence of L. pneumophila. This expands our understanding of drug resistance and pathogenicity in Legionella, provides a scientific basis for the prevention of Legionnaires' disease outbreaks and the rational use of clinical drugs, and facilitates effective treatment of Legionnaires' disease.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/microbiologia , Azitromicina/farmacologia , Sistemas CRISPR-Cas , Legionella pneumophila/genética
2.
PLoS Pathog ; 18(7): e1010660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816513

RESUMO

Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91-120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas , Febre Q/metabolismo , Vacúolos/metabolismo
4.
Infect Immun ; 90(6): e0001622, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35587202

RESUMO

Coxiella burnetii, the causative agent of zoonotic Q fever, is characterized by replicating inside the lysosome-derived Coxiella-containing vacuole (CCV) in host cells. Some effector proteins secreted by C. burnetii have been reported to be involved in the manipulation of autophagy to facilitate the development of CCVs and bacterial replication. Here, we found that the Coxiella plasmid effector B (CpeB) localizes on vacuole membrane targeted by LC3 and LAMP1 and promotes LC3-II accumulation. Meanwhile, the C. burnetii strain lacking the QpH1 plasmid induced less LC3-II accumulation, which was accompanied by smaller CCVs and lower bacterial loads in THP-1 cells. Expression of CpeB in the strain lacking QpH1 led to restoration in LC3-II accumulation but had no effect on the smaller CCV phenotype. In the severe combined immune deficiency (SCID) mouse model, infections with the strain expressing CpeB led to significantly higher bacterial burdens in the spleen and liver than its parent strain devoid of QpH1. We also found that CpeB targets Rab11a to promote LC3-II accumulation. Intratracheally inoculated C. burnetii resulted in lower bacterial burdens and milder lung lesions in Rab11a conditional knockout (Rab11a-/- CKO) mice. Collectively, these results suggest that CpeB promotes C. burnetii virulence by inducing LC3-II accumulation via a pathway involving Rab11a.


Assuntos
Coxiella burnetii , Febre Q , Imunodeficiência Combinada Severa , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Camundongos , Camundongos SCID , Plasmídeos , Febre Q/microbiologia , Imunodeficiência Combinada Severa/metabolismo , Vacúolos/microbiologia , Virulência
5.
BMC Vet Res ; 18(1): 204, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624449

RESUMO

BACKGROUND: Coxiella burnetii (Cb) is the causative agent of the zoonotic disease Q fever which is distributed worldwide. Molecular typing of Cb strains is essential to find out the infectious source and prevent Q fever outbreaks, but there has been a lack of typing data for Cb strains in China. The aim of this study was to investigate the genotypes of Cb strains in wild rats in Yunnan Province, China. RESULTS: Eighty-six wild rats (Rattus flavipectus) were collected in Yunnan Province and 8 of the 86 liver samples from the wild rats were positive in Cb-specific quantitative PCR (qPCR). The Cb strains from the 8 rats were then typed into 3 genotypes using 10-spacer multispacer sequence typing (MST), and 2 of the 3 genotypes were recognized as novel ones. Moreover, the Cb strains in the wild rats were all identified as genotype 1 using 6-loci multilocus variable number of tandem repeat analysis (MLVA). CONCLUSIONS: This is the first report of genotypic diversity of Cb strains from wild rats in China. Further studies are needed to explore the presence of more genotypes and to associate the genotypes circulating in the wildlife-livestock interaction with those causing human disease to further expand on the epidemiological aspects of the pathogen.


Assuntos
Coxiella burnetii , Febre Q , Doenças dos Roedores , Animais , China/epidemiologia , Coxiella burnetii/genética , Genótipo , Tipagem Molecular/veterinária , Febre Q/epidemiologia , Febre Q/veterinária , Ratos , Doenças dos Roedores/epidemiologia
6.
BMC Microbiol ; 20(1): 251, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787788

RESUMO

BACKGROUND: Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes a zoonotic disease commonly called Q fever globally. In this study, an up-converting phosphor technology-based lateral flow (UPT-LF) assay was established for the rapid and specific detection of phase I strains of C. burnetii. RESULTS: Specific monoclonal antibodies (10B5 and 10G7) against C. burnetii phase I strains were prepared and selected for use in the UPT-LF assay by the double-antibody-sandwich method. The detection sensitivity of the Coxiella-UPT-LF was 5 × 104 GE/ml for a purified C. burnetii phase I strain and 10 ng/ml for LPS of C. burnetii Nine Mile phase I (NMI). Good linearity was observed for C. burnetii phase I and NMI LPS quantification (R2 ≥ 0.989). The UPT-LF assay also exhibited a high specificity to C. burnetii, without false-positive results even at 108 GE/ml of non-specific bacteria, and good inclusivity for detecting different phase I strains of C. burnetii. Moreover, the performance of the Coxiella-UPT-LF assay was further confirmed using experimentally and naturally infected samples. CONCLUSIONS: Our results indicate that Coxiella-UPT-LF is a sensitive and reliable method for rapid screening of C. burnetii, suitable for on-site detection in the field.


Assuntos
Anticorpos Monoclonais/análise , Técnicas Biossensoriais/métodos , Coxiella burnetii/isolamento & purificação , Febre Q/diagnóstico , Animais , Anticorpos Antibacterianos/análise , Antígenos de Bactérias/imunologia , Coxiella burnetii/imunologia , Diagnóstico Precoce , Feminino , Humanos , Imunização , Imunoensaio , Masculino , Camundongos , Testes Imediatos , Sensibilidade e Especificidade
7.
J Infect Dis ; 215(10): 1580-1589, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27703037

RESUMO

Coxiella burnetii is a gram-negative bacterium that causes acute and chronic Q fever. Because of the severe adverse effect of whole-cell vaccination, identification of immunodominant antigens of C. burnetii has become a major focus of Q fever vaccine development. We hypothesized that secreted C. burnetii type IV secretion system (T4SS) effectors may represent a major class of CD8+ T-cell antigens, owing to their cytosolic localization. Twenty-nine peptides were identified that elicited robust CD8+ T-cell interferon γ (IFN-γ) recall responses from mice infected with C. burnetii. Interestingly, 22 of 29 epitopes were derived from 17 T4SS-related proteins, none of which were identified as immunodominant antigens by using previous antibody-guided approaches. These epitopes were expressed in an attenuated Listeria monocytogenes vaccine strain. Immunization with recombinant L. monocytogenes vaccines induced a robust CD8+ T-cell response and conferred measurable protection against C. burnetii infection in mice. These data suggested that T4SS effectors represent an important class of C. burnetii antigens that can induce CD8+ T-cell responses. We also showed that attenuated L. monocytogenes vaccine vectors are an efficient antigen-delivery platform that can be used to induce robust protective CD8+ T-cell immune responses against C. burnetii infection.


Assuntos
Apresentação de Antígeno/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Coxiella burnetii/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/química , Coxiella burnetii/química , Epitopos de Linfócito T/química , Feminino , Testes de Liberação de Interferon-gama , Listeria monocytogenes/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Febre Q/imunologia , Febre Q/microbiologia , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/imunologia , Vacinas Atenuadas/química
8.
J Infect Dis ; 213(1): 71-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401029

RESUMO

Rickettsia heilongjiangensis is the pathogen of Far eastern spotted fever, and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) is expressed in human vascular endothelial cells, the major target cells of rickettsiae. In the present study, we investigated the effects of altered Tim-3 expression in vivo in mice and in vitro in human endothelial cells, on day 3 after R. heilongjiangensis infection. Compared with corresponding controls, rickettsial burdens both in vivo and in vitro were significantly higher with blocked Tim-3 signaling or silenced Tim-3 and significantly lower with overexpressed Tim-3. Additionally, the expression of inducible nitric oxide synthase and interferon γ in endothelial cells with blocked Tim-3 signaling or silenced Tim-3 was significantly lower, while the expression of inducible nitric oxide synthase, interferon γ, and tumor necrosis factor α in transgenic mice with Tim-3 overexpression was significantly higher. These results reveal that enhanced Tim-3 expression facilitates intracellular rickettsial killing in a nitric oxide-dependent manner in endothelial cells during the early phase of rickettsial infection.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Membrana/biossíntese , Infecções por Rickettsia/metabolismo , Rickettsia/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células Endoteliais/imunologia , Células Endoteliais/microbiologia , Receptor Celular 2 do Vírus da Hepatite A , Interações Hospedeiro-Patógeno/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Infecções por Rickettsia/imunologia , Infecções por Rickettsia/microbiologia , Células Vero
9.
Microbiology (Reading) ; 160(Pt 12): 2718-2731, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298245

RESUMO

The obligate intracellular Gram-negative bacterium Coxiella burnetii causes Q fever, a worldwide zoonosis. Here we labelled Cox. burnetii with biotin and used biotin-streptavidin affinity chromatography to isolate surface-exposed proteins (SEPs). Using two-dimensional electrophoresis combined with mass spectrometry, we identified 37 proteins through bioinformatics analysis. Thirty SEPs expressed in Escherichia coli (recombinant SEPs, rSEPs) were used to generate microarrays, which were probed with sera from mice experimentally infected with Cox. burnetii or sera from Q fever patients. Thirteen rSEPs were recognized as seroreactive, and the majority reacted with at least 50 % of the sera from mice infected with Cox. burnetii but not with sera from mice infected with Rickettsia rickettsii, R. heilongjiangensis, or R. typhi. Further, 13 proteins that reacted with sera from patients with Q fever did not react with sera from patients with brucellosis or mycoplasma pneumonia. Our results suggest that these seroreactive SEPs have potential as serodiagnostic antigens or as subunit vaccine antigens against Q fever.


Assuntos
Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Coxiella burnetii/química , Proteínas de Membrana/análise , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Biologia Computacional , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Proteínas de Membrana/imunologia , Camundongos
10.
BMC Infect Dis ; 14: 332, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24938647

RESUMO

BACKGROUND: Far-eastern spotted fever (FESF) is an important emerging infectious disease in Northeast Asia. The laboratory diagnosis of FESF in hospitals is mainly based on serological methods. However, these methods need to cultivate rickettsial cells as diagnostic antigens, which is both burdensome and dangerous. METHODS: Eleven surface-exposed proteins (SEPs) were identified in our previous study and their recombinant proteins (rSEPs) fabricated on a microarray were serologically analyzed with seventeen paired sera from patients suffered from FESF in this study. RESULTS: All the rSEPs showed sensitivities of between 53% and 82% to acute-phase sera and of between 65% and 82% to convalescent-phase sera, and all the rSEPs except rRplA showed specificities of between 80% and 95%. The combination assay of two, three, or four of the four rSEPs (rOmpA-2, rOmpB-3, rRpsB, and rSdhB) showed better sensitivities of between 76% and 94% to the acute-phase sera or between 82% and 100% to the convalescent-phase sera and acceptable specificities of between 75% and 90%. CONCLUSIONS: Our results suggest that the four rSEPs are more likely candidate antigens for serological diagnosis of FESF.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Membrana/imunologia , Análise em Microsséries/métodos , Infecções por Rickettsia/diagnóstico , Rickettsia/isolamento & purificação , Testes Sorológicos/métodos , Idoso , Animais , Feminino , Humanos , Rickettsia/imunologia , Infecções por Rickettsia/imunologia , Infecções por Rickettsia/microbiologia , Sensibilidade e Especificidade
11.
Microbiol Spectr ; 12(4): e0369523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358243

RESUMO

Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-ß. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE: Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-ß production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.


Assuntos
Interferon Tipo I , Febre Maculosa das Montanhas Rochosas , Humanos , Rickettsia rickettsii/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/genética , Interferon beta/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas com Motivo Tripartido/genética
12.
Int J Infect Dis ; 147: 107180, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059574

RESUMO

From January 2022 to November 2022, sporadic psittacosis occurred in Lishui city, China. The patients were presented with fever, cough, and pulmonary infiltration. Their clinical symptoms were not relieved after receiving cephalosporin, penicillin, beta-lactamase inhibitors, and quinolones. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid samples from the patients revealed Chlamydia psittaci infection. Then, three C. psittaci strains were isolated from the patients. Their whole genome sequences (WGSs) were obtained, and a core genome multilocus sequence typing (cgMLST) method was developed to study the population structure of C. psittaci. Using the constructed cgMLST method, 72 WGSs were divided into four related groups and ten sub-clusters. The Lishui strains formed a unique population of C. psittaci, which might represent a new variant of C. psittaci. In vitro antimicrobial susceptibility testing suggested that the Lishui strains were sensitive to tetracycline, macrolides, quinolones, and no drug-resistance was observed.


Assuntos
Antibacterianos , Chlamydophila psittaci , Tipagem de Sequências Multilocus , Psitacose , Sequenciamento Completo do Genoma , Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Chlamydophila psittaci/efeitos dos fármacos , Chlamydophila psittaci/classificação , Psitacose/microbiologia , Psitacose/diagnóstico , Humanos , China , Antibacterianos/farmacologia , Masculino , Testes de Sensibilidade Microbiana , Feminino , Pessoa de Meia-Idade , Filogenia , Líquido da Lavagem Broncoalveolar/microbiologia , Genoma Bacteriano
13.
Front Microbiol ; 14: 1141217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187539

RESUMO

The order Rickettsiales in the class Alphaproteobacteria comprises vector-borne pathogens of both medical and veterinary importance. Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans, playing a critical role in the transmission of rickettsiosis. In the present study, 880 ticks collected from Jinzhai County, Lu'an City, Anhui Province, China in 2021-2022 were identified as belonging to five species from three genera. DNA extracted from individual ticks was examined using nested polymerase chain reaction targeting the 16S rRNA gene (rrs), and the gene fragments amplified were sequenced to detect and identify Rickettsiales bacteria in the ticks. For further identification, the rrs-positive tick samples were further amplified by PCR targeting the gltA and groEL gene and sequenced. As a result, 13 Rickettsiales species belonging to the genera Rickettsia, Anaplasma, and Ehrlichia were detected, including three tentative species of Ehrlichia. Our results reveal the extensive diversity of Rickettsiales bacteria in ticks from Jinzhai County, Anhui Province. There, emerging rickettsial species may be pathogenic and cause under-recognized diseases. Detection of several pathogens in ticks that are closely related to human diseases may indicate a potential risk of infection in humans. Therefore, additional studies to assess the potential public health risks of the Rickettsiales pathogens identified in the present study are warranted.

14.
Int J Infect Dis ; 131: 32-39, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967037

RESUMO

OBJECTIVES: From March to June 2021, the reported number of clinically diagnosed endemic typhus in Anhui and Hubei provinces of China nearly increased four-fold compared with the monthly average numbers in last 5 years. An etiological and epidemiological investigation was initiated. METHODS: The clinical specimens from the reported patients and the potential vector ticks were collected for molecular and serological detection, as well as cell culturing assay to identify the potential pathogen. RESULTS: Polymerase chain reaction and sequence analysis of rrs and groEL showed that the pathogen from these patients was Ehrlichia sp., isolated from Haemaphysalis longicornis attached to these patients. The phylogenetic analysis based on 39 Ehrlichia genomes suggested that it should be taxonomically classified as a novel species, tentatively named "Candidatus Ehrlichia erythraense". A total of 19 of 106 cases were confirmed as Candidatus Ehrlichia erythraense infections by polymerase chain reaction, sequencing, and/or serological tests. The most frequent symptoms were fever (100%), rashes (100%), asthenia (100%), anorexia (100%), and myalgia (79%). CONCLUSION: The occurrence of the disease presenting with fever and rashes in Anhui and Hubei provinces was caused by a novel species of the genus Ehrlichia; physicians need to be aware of this newly-discovered pathogen to ensure appropriate testing, treatment, and regional surveillance.


Assuntos
Ehrlichiose , Carrapatos , Animais , Humanos , Ehrlichia/genética , Filogenia , Ehrlichiose/diagnóstico , Ehrlichiose/epidemiologia , China/epidemiologia
15.
BMC Microbiol ; 12: 35, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22420424

RESUMO

BACKGROUND: Coxiella burnetii is the etiological agent of Q fever. The clinical diagnosis of Q fever is mainly based on several serological tests. These tests all need Coxiella organisms which are difficult and hazardous to culture and purify. RESULTS: An immunoproteomic study of C. burnetii Xinqiao strain isolated in China was conducted with the sera from experimentally infected BALB/c mice and Q fever patients. Twenty of whole proteins of Xinqiao recognized by the infection sera were identified by mass spectrometry. Nineteen of the 20 proteins were successfully expressed in Escherichia coli and used to fabricate a microarray which was probed with Q fever patient sera. As a result, GroEL, YbgF, RplL, Mip, OmpH, Com1, and Dnak were recognized as major seroreactive antigens. The major seroreactive proteins were fabricated in a small microarray and further analyzed with the sera of patients with rickettsial spotted fever, Legionella pneumonia or streptococcal pneumonia. In this analysis, these proteins showed fewer cross-reactions with the tested sera. CONCLUSIONS: Our results demonstrate that these 7 Coxiella proteins gave a modest sensitivity and specificity for recognizing of Q fever patient sera, suggesting that they are potential serodiagnostic markers for Q fever.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias , Proteínas de Bactérias , Biomarcadores/sangue , Coxiella burnetii/imunologia , Proteoma/análise , Febre Q/diagnóstico , Animais , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , China , Clonagem Molecular , Escherichia coli , Expressão Gênica , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Análise Serial de Proteínas , Sensibilidade e Especificidade , Testes Sorológicos/métodos
16.
J Infect Dis ; 203(2): 283-91, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21288829

RESUMO

Coxiella burnetii is the etiological agent of human Q fever. In this study, adaptive transfer of mouse bone marrow-derived dendritic cells (BMDCs) stimulated with C. burnetii antigen, phase I whole-cell antigen (PIAg), lipopolysaccharide (LPS)-removed PIAg (PIIAg), protein antigen Com1, or SecB significantly reduced coxiella burden in recipient mice compared with control mice. Mice that received PIIAg-pulsed BMDCs displayed substantially lower coxiella burden than recipient mice of PIAg-pulsed BMDCs after C burnetii challenge. The protection offered by the antigen-activated BMDCs was correlated with the increased proliferation of helper T (T(H)) T(H)1 CD4(+) cells, preferential development of T(H)17 cells, and impaired expansion of regulatory T lymphocytes. Our results suggest that PIIAg is far superior to PIAg in activating BMDCs to confer protection against C. burnetii in vivo, whereas Com1 and SecB are protective antigens because Com1- or SecB-pulsed BMDCs confer partial protection.


Assuntos
Coxiella burnetii/imunologia , Células Dendríticas/imunologia , Febre Q/imunologia , Febre Q/microbiologia , Animais , Antígenos de Bactérias/imunologia , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C
17.
Front Microbiol ; 13: 928025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770169

RESUMO

Chlamydia psittaci is the causative agent of psittacosis, a worldwide zoonotic disease. A rapid, specific, and sensitive diagnostic assay would be benefit for C. psittaci infection control. In this study, an assay combining recombinase-aided amplification and a lateral flow strip (RAA-LF) for the detection of active C. psittaci infection was developed. The RAA-LF assay targeted the CPSIT_RS02830 gene of C. psittaci and could be accomplished in 15 min at a single temperature (39°C). The analytical sensitivity of the assay was as low as 1 × 100 copies/µl and no cross-reaction with some other intracellular pathogens was observed. Moreover, all feces samples from mice infected with C. psittaci at day-1 post-infection were positive in the RAA-LF assay. In conclusion, the RAA-LF assay provides a convenient, rapid, specific and sensitive method for detection of active C. psittaci infection and it is also suitable for C. psittaci detection in field.

18.
Emerg Microbes Infect ; 11(1): 2715-2723, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36287125

RESUMO

Between November 2021 and January 2022, four patients of community-acquired pneumonia were admitted to the hospitals in Lishui city, Zhejiang province, China. Their main clinical manifestations were fever and dry cough as well as radiographic infiltrate, but the empiric antimicrobial therapy or traditional Chinese medicine was not effective for their illness. Clinical specimens from the patients as well as environmental and poultry specimens were collected for the determination of the causative pathogen. The ompA gene and seven housekeeping genes of Chlamydia psittaci were successfully amplified from all the patients, and the sequences of each gene were identical to one another, suggesting that they were infected by the same strain of C. psittaci. A novel strain of C. psittaci (LS strain) was isolated from the bronchoalveolar lavage fluid of patient 2 and its whole genome was obtained. Phylogenetic analyses based on the whole-genome sequences showed that the isolate is most closely related to the strain (WS/RT/E30) identified as genotype E/B. In addition, The ompA gene and four housekeeping genes of C. psittaci were also amplified from two of four faeces samples of geese at the home of patient 2, and the sequences from geese were 100% identical to those from the patients. Accordingly, these cases could be attributed to a circulating C. psittaci strain of genotype E/B in the local geese. Therefore, there is an urgent need to strengthen the regional surveillance on C. psittaci among poultry and humans for prevention and control of the outbreak of psittacosis in the city.


Assuntos
Chlamydophila psittaci , Infecções Comunitárias Adquiridas , Pneumonia , Psitacose , Animais , Humanos , Chlamydophila psittaci/genética , Psitacose/epidemiologia , Psitacose/veterinária , Gansos , Filogenia , China/epidemiologia , Infecções Comunitárias Adquiridas/epidemiologia , Genótipo , Aves Domésticas
19.
J Bacteriol ; 193(19): 5564-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21914880

RESUMO

Rickettsia heilongjiangensis is an emerging tick-transmitted human pathogen causing far-Eastern spotted fever. Here we report the complete sequence and the main features of the genome of R. heilongjiangensis (strain 054).


Assuntos
Genoma Bacteriano/genética , Infecções por Rickettsia/microbiologia , Rickettsia/genética , Carrapatos/microbiologia , Animais , Humanos , Dados de Sequência Molecular , Rickettsia/patogenicidade , Infecções por Rickettsia/transmissão
20.
BMC Immunol ; 12: 52, 2011 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-21888659

RESUMO

BACKGROUND: Coxiella burnetii is an obligate intracellular bacterium and the etiologic agent of Q fever; both coxiella outer membrane protein 1 (Com1) and heat shock protein B (HspB) are its major immunodominant antigens. It is not clear whether Com1 and HspB have the ability to mount immune responses against C. burnetii infection. RESULTS: The recombinant proteins Com1 and HspB were applied to pulse human monocyte-derived dendritic cells (HMDCs), and the pulsed HMDCs were used to stimulate isogenic T cells. Com1-pulsed HMDCs expressed substantially higher levels of surface molecules (CD83, CD40, CD80, CD86, CD54, and CD58) and a higher level of interleukin-12 than HspB-pulsed HMDCs. Moreover, Com1-pulsed HMDCs induced high-level proliferation and activation of CD4(+) and CD8(+) cells, which expressed high levels of T-cell activation marker CD69 and inflammatory cytokines IFN-γ and TNF-α. In contrast, HspB-pulsed HMDCs were unable to induce efficient T-cell proliferation and activation. CONCLUSIONS: Our results demonstrate that Com1-pulsed HMDCs are able to induce efficient T-cell proliferation and drive T cells toward Th1 and Tc1 polarization; however, HspB-pulsed HMDCs are unable to do so. Unlike HspB, Com1 is a protective antigen, which was demonstrated by the adoptive transfer of Com1-pulsed bone marrow dendritic cells into naive BALB/c mice.


Assuntos
Proteínas de Bactérias/farmacologia , Coxiella burnetii/imunologia , Células Dendríticas/metabolismo , Lipoproteínas/farmacologia , Febre Q/imunologia , Linfócitos T/metabolismo , Transferência Adotiva , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Coxiella burnetii/patogenicidade , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Proteínas de Choque Térmico/farmacologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/patologia , Febre Q/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA