Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 98(7): 776-80, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18943253

RESUMO

Following inoculation of host and nonhost plants with Plasmopara viticola, the grapevine downy mildew, a histological survey was undertaken to identify the stage where its development is contained in nonhosts and in resistant host plants. Three herbaceous nonhost species, Beta vulgaris, Lactuca sativa, and Capsicum annuum, and three grapevine species displaying different level of resistance (Vitis vinifera [susceptible], Vitis riparia [partially resistant] and Muscadinia rotundifolia [totally resistant]) where inoculated by P. viticola using a controlled leaf disk inoculation bioassay. During the early steps of infection, defined as encystment of zoospores on stomata, penetration of the germ tube, and production of the vesicle with the primary hypha, there was no evidence of a clear-cut preference to grapevine tissues that could attest to host specificity. The main difference between host grapevine species and nonhosts was observed during the haustorium formation stage. In nonhost tissues, the infection was stopped by cell wall-associated defense responses before any mature haustorium could appear. Defense responses in resistant grapevines were triggered when haustoria were fully visible and corresponded to hypersensitive responses. These observations illustrate that, for P. viticola, haustorium formation is not only a key stage for the establishment of biotrophy but also for the host specificity and the recognition by grapevine resistance factors.


Assuntos
Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Parede Celular/metabolismo , Parede Celular/microbiologia , Interações Hospedeiro-Patógeno , Hifas/fisiologia , Imunidade Inata , Vitis/metabolismo
2.
Biochimie ; 75(8): 687-706, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-8286442

RESUMO

The hypersensitive reaction to a pathogen is one of the most efficient defense mechanisms in nature and leads to the induction of numerous plant genes encoding defense proteins. These proteins include: 1) structural proteins that are incorporated into the extracellular matrix and participate in the confinement of the pathogen; 2) enzymes of secondary metabolism, for instance those of the biosynthesis of plant antibiotics; 3) pathogenesis-related (PR) proteins which represent major quantitative changes in soluble protein during the defense response. The PRs have typical physicochemical properties that enable them to resist to acidic pH and proteolytic cleavage and thus survive in the harsh environments where they occur: vacuolar compartment or cell wall or intercellular spaces. Since the discovery of the first PRs in tobacco many other similar proteins have been isolated from tobacco but also from other plant species, including dicots and monocots, the widest range being characterized from hypersensitively reacting tobacco. Based first on serological properties and later on sequence data, the tobacco PRs have been classified in five major groups. Group PR-1 contains the first discovered PRs of 15-17 kDa molecular mass, whose biological activity is still unknown, but some members have been shown recently to have antifungal activity. Group PR-2 contains three structurally distinct classes of 1,3-beta-glucanases, with acidic and basic counterparts, with dramatically different specific activity towards linear 1,3-beta-glucans and with different substrate specificity. Group PR-3 consists of various chitinases-lysozymes that belong to three distinct classes, are vacuolar or extracellular, and exhibit differential chitinase and lysozyme activities. Some of them, either alone or in combination with 1,3-beta-glucanases, have been shown to be antifungal in vitro and in vivo (transgenic plants), probably by hydrolysing their substrates as structural components in the fungal cell wall. Group PR-4 is the less studied, and in tobacco contains four members of 13-14.5 kDa of unknown activity and function. Group PR-5 contains acidic-neutral and very basic members with extracellular and vacuolar localization, respectively, and all members show sequence similarity to the sweet-tasting protein thaumatin. Several members of the PR-5 group from tobacco and other plant species were shown to display significant in vitro activity of inhibiting hyphal growth or spore germination of various fungi probably by a membrane permeabilizing mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)


Assuntos
Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas/imunologia , Quitinases/metabolismo , Glucana 1,3-beta-Glucosidase , Hidrolases/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/classificação , Plantas Tóxicas , Nicotiana/metabolismo , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA