Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chemistry ; 30(28): e202400308, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38488326

RESUMO

Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.


Assuntos
Azetidinas , Peptídeos Cíclicos , Azetidinas/química , Azetidinas/síntese química , Ciclização , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Química Click
2.
Org Biomol Chem ; 18(28): 5400-5405, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32618315

RESUMO

The synthesis and use of oxetane modified dipeptide building blocks in solution and solid-phase peptide synthesis (SPPS) is reported. The preparation of building blocks containing non-glycine residues at the N-terminus in a stereochemically controlled manner is challenging. Here, a practical 4-step route to such building blocks is demonstrated, through the synthesis of dipeptides containing contiguous alanine residues. The incorporation of these new derivatives at specific sites along the backbone of an alanine-rich peptide sequence containing eighteen amino acids is demonstrated via solid-phase peptide synthesis. Additionally, new methods to enable the incorporation of all 20 of the proteinogenic amino acids into such dipeptide building blocks are reported through modifications of the synthetic route (for Cys and Met) and by changes to the protecting group strategy (for His, Ser and Thr).


Assuntos
Dipeptídeos/antagonistas & inibidores , Dipeptídeos/síntese química , Desenvolvimento de Medicamentos , Éteres Cíclicos/farmacologia , Técnicas de Síntese em Fase Sólida , Dipeptídeos/química , Éteres Cíclicos/síntese química , Éteres Cíclicos/química , Estrutura Molecular
3.
Phys Chem Chem Phys ; 22(43): 25075-25083, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33118559

RESUMO

Peptide-based drugs combine advantages of larger biological therapeutics with those of small molecule drugs, but they generally display poor permeability and metabolic stability. Recently, we introduced a new type of peptide bond isostere, in which the backbone carbonyl is replaced with a 3-amino oxetane heterocycle, into short linear peptides with the aim of improving their therapeutic potential. In this study, we have explored the impact of oxetane modification on α-helical peptides to establish whether or not this modification is tolerated in this biologically important structural motif. The oxetane modification was introduced at two positions in a well-characterised helical peptide sequence, and circular dichroism and NMR spectroscopy were used to measure the resulting secondary structure content under different experimental conditions. Our data demonstrated that introduction of an oxetane into the peptide backbone results in a significant loss of helicity, regardless of where in the sequence the modification is placed. The molecular determinants of this destabilisation were then explored using steered molecular dynamics simulations, a computational method analogous to single molecule spectroscopy. Our simulations indicated that oxetane modification introduces a kink in the helical axis, alters the dihedral angles of residues up to three positions away from the modification, and disrupts the (i, i + 4) hydrogen bonding pattern characteristic of α-helices in favour of new, short-range hydrogen bonds. The detailed structural understanding provided in this work can direct future design of chemically modified peptides.


Assuntos
Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Peptídeos/química , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Estrutura Secundária de Proteína
4.
Angew Chem Int Ed Engl ; 55(10): 3463-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833898

RESUMO

Chemical probes capable of reacting with KS (ketosynthase)-bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6-methylsalicylic acid synthase (6-MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6-MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6-MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.


Assuntos
Sondas Moleculares , Salicilatos/metabolismo , Cromatografia Líquida de Alta Pressão
5.
Angew Chem Int Ed Engl ; 53(44): 11944-9, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25212788

RESUMO

A library of functionalized chemical probes capable of reacting with ketosynthase-bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl-ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology.


Assuntos
Descoberta de Drogas/métodos , Policetídeos/química , Catálise
6.
Chem Sci ; 10(2): 453-463, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30746093

RESUMO

In this study, we report the rapid characterisation of a novel microbial natural product resulting from the rational derepression of a silent gene cluster. A conserved set of five regulatory genes was used as a query to search genomic databases and identify atypical biosynthetic gene clusters (BGCs). A 20-kb BGC from the genetically intractable Streptomyces sclerotialus bacterial strain was captured using yeast-based homologous recombination and introduced into validated heterologous hosts. CRISPR/Cas9-mediated genome editing was then employed to rationally inactivate the key transcriptional repressor and trigger production of an unprecedented class of hybrid natural products exemplified by (2-(benzoyloxy)acetyl)-l-proline, named scleric acid. Subsequent rounds of CRISPR/Cas9-mediated gene deletions afforded a selection of biosynthetic gene mutant strains which led to a plausible biosynthetic pathway for scleric acid assembly. Synthetic standards of scleric acid and a key biosynthetic intermediate were also prepared to confirm the chemical structures we proposed. The assembly of scleric acid involves two unique condensation reactions catalysed by a single NRPS module and an ATP-grasp enzyme that link a proline and a benzoyl residue to each end of a rare hydroxyethyl-ACP intermediate, respectively. Scleric acid was shown to exhibit moderate inhibition activity against Mycobacterium tuberculosis, as well as inhibition of the cancer-associated metabolic enzyme nicotinamide N-methyltransferase (NNMT).

7.
Chem Sci ; 10(8): 2465-2472, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881675

RESUMO

Cyclic peptides are an important source of new drugs but are challenging to produce synthetically. We show that head-to-tail peptide macrocyclisations are greatly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide C[double bond, length as m-dash]O bonds with an oxetane ring. The cyclisation precursors are easily made by standard solution- or solid-phase peptide synthesis techniques. Macrocyclisations across a range of challenging ring sizes (tetra-, penta- and hexapeptides) are enabled by incorporation of this turn-inducing element. Oxetane incorporation is shown to be superior to other established amino acid modifications such as N-methylation. The positional dependence of the modification on cyclisation efficiency is mapped using a cyclic peptide of sequence LAGAY. We provide the first direct experimental evidence that oxetane modification induces a turn in linear peptide backbones, through the observation of d NN (i, i + 2) and d αN (i, i + 2) NOEs, which offers an explanation for these improvements. For cyclic peptide, cLAGAY, a combination of NMR derived distance restraints and molecular dynamics simulations are used to show that this modification alters the backbone conformation in proximity to the oxetane, with the flexibility of the ring reduced and a new intramolecular H-bond established. Finally, we incorporated an oxetane into a cyclic pentapeptide inhibitor of Aminopeptidase N, a transmembrane metalloprotease overexpressed on the surface of cancer cells. The inhibitor, cCNGRC, displayed similar IC50 values in the presence or absence of an oxetane at the glycine residue, indicating that bioactivity is fully retained upon amide C[double bond, length as m-dash]O bond replacement.

8.
Chem Commun (Camb) ; (25): 2932-4, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18566729

RESUMO

A Lewis acid-catalyzed rearrangement of phosphorimidates allows a direct, high-yielding transformation of azides with commercially available phosphites into secondary phosphoramidates.

9.
Chem Commun (Camb) ; 53(92): 12481, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29114670

RESUMO

Correction for 'Novel chemical probes for the investigation of nonribosomal peptide assembly' by Y. T. Candace Ho et al., Chem. Commun., 2017, 53, 7088-7091.

10.
Chem Commun (Camb) ; 53(52): 7088-7091, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28627528

RESUMO

Chemical probes were devised and evaluated for the capture of biosynthetic intermediates involved in the bio-assembly of the nonribosomal peptide echinomycin. Putative intermediate peptide species were isolated and characterised, providing fresh insights into pathway substrate flexibility and paving the way for novel chemoenzymatic approaches towards unnatural peptides.


Assuntos
Equinomicina/biossíntese , Sondas Moleculares/análise , Equinomicina/química , Sondas Moleculares/química , Estrutura Molecular
11.
Chem Commun (Camb) ; 52(68): 10392-5, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27481638

RESUMO

Malonyl carba(dethia) N-decanoyl cysteamine methyl esters and novel acetoxymethyl esters were utilised as second-generation probes for polyketide intermediate capture. The use of these tools in vivo led to the characterisation of an almost complete set of biosynthetic intermediates from a modular assembly line, providing a first kinetic overview of intermediate processing leading to complex natural product formation.


Assuntos
Ésteres/química , Policetídeos/análise , Policetídeos/química , Ésteres/síntese química , Cinética , Policetídeos/metabolismo , Streptomyces/metabolismo
12.
Angew Chem Weinheim Bergstr Ger ; 128(10): 3524-3528, 2016 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27478274

RESUMO

Chemical probes capable of reacting with KS (ketosynthase)-bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6-methylsalicylic acid synthase (6-MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6-MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6-MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.

14.
Chem Commun (Camb) ; 47(1): 349-51, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20830364

RESUMO

The Staudinger reaction of unprotected azido-peptides with silylated phosphinic acids and esters on the solid support offers a straightforward acid-free entry to different phosphonamidate peptide esters or acids under mild conditions in high purity and yield.


Assuntos
Amidas/química , Ésteres/química , Compostos de Organossilício/química , Ácidos Fosfínicos/química , Fosfopeptídeos/síntese química , Estrutura Molecular , Fosfopeptídeos/química , Estereoisomerismo
15.
Org Lett ; 13(20): 5440-3, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21958352

RESUMO

Site-specific functionalization of proteins by bioorthogonal modification offers a convenient pathway to create, modify, and study biologically active biopolymers. In this paper the Staudinger reaction of aryl-phosphonites for the chemoselective functionalization of azido-peptides and proteins was probed. Different water-soluble phosphonites with oligoethylene substituents were synthesized and reacted with unprotected azido-containing peptides in aqueous systems at room temperature in high conversions. Finally, the Staudinger-phosphonite reaction was successfully applied to the site-specific modification of the protein calmodulin.


Assuntos
Azidas/química , Calmodulina/química , Compostos Organofosforados/química , Peptídeos/química , Proteínas/química , Técnicas de Química Combinatória , Estrutura Molecular , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA