Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(14): 145001, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325648

RESUMO

This Letter describes the theoretical structure of the plasma diffusion layer that develops from an initially sharp gas-metal interface. The layer dynamics under isothermal and isobaric conditions is considered so that only mass diffusion (mixing) processes can occur. The layer develops a distinctive structure with asymmetric and highly nonlinear features. On the gas side of the layer the diffusion coefficient goes nearly to zero, causing a sharp "front," or well defined boundary between mix layer and clean gas with similarities to the Marshak thermal waves. Similarity solutions for the nonlinear profiles are found and verified with full ion kinetic code simulations. A criterion for plasma diffusion to significantly affect burn is given.

2.
Nat Commun ; 5: 4149, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938656

RESUMO

The interaction of petawatt (10(15) W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

3.
Phys Rev Lett ; 102(10): 105001, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392120

RESUMO

We measure up to 2x10;{10} positrons per steradian ejected out the back of approximately mm thick gold targets when illuminated with short ( approximately 1 ps) ultraintense ( approximately 1x10;{20} W/cm;{2}) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be approximately 10;{16} positrons/cm;{3}, the highest ever created in the laboratory.

4.
Rev Sci Instrum ; 79(10): 10E533, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044514

RESUMO

An ultraintense short pulse lasers incident on solid targets can generate relativistic electrons that then accelerate energetic protons and ions. These fast electrons and ions can effectively heat the solid target, beyond the region of direct laser interaction, and are important to realizing the fast ignition concept. To study these energetic ions and electrons produced from the laser-target interactions, we have developed a range of spectrometers that can cover a large energy range (from less than 0.1 MeV to above 100 MeV). They are physically compact, high performance, and low cost. We will present the basic design of these spectrometers and the test results from recent laser experiments.

5.
Opt Lett ; 29(1): 47-9, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14719656

RESUMO

Experimental results are presented for an adaptive optics system based on a quadrature Twyman-Green interferometric wave-front sensor. The system uses a circularly polarized reference beam to form two interferograms with a pi/2 phase shift. The experiments conducted used Kolmogorov phase screens to simulate atmospheric phase distortions. Strehl ratio improvements by a factor of 8, to an absolute value of 0.45, are demonstrated.

6.
Appl Opt ; 43(30): 5585-93, 2004 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-15534988

RESUMO

Laboratory breadboard results of a high-speed adaptive-optics system are presented. The wave-front sensor for the adaptive-optics system is based on a quadrature interferometer, which directly measures the turbulence-induced phase aberrations. The spatial light modulator used in the phase-conjugate engine was a microelectromechanical systems-based piston-only correction device with 1024 actuators. Laboratory experiments were conducted with this system utilizing Kolmogorov phase screens to simulate atmospheric phase distortions. The adaptive-optics system achieved correction speeds in excess of 800 Hz and Strehl ratios greater than 0.5 with the Kolmogorov phase screens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA