Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(27): 18626-18638, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918178

RESUMO

Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.


Assuntos
Cianobactérias , Cianobactérias/metabolismo , Cianobactérias/química , Cianobactérias/genética , Humanos , Família Multigênica , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
2.
Chemistry ; 30(2): e202303175, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37793067

RESUMO

Carbon-centered radicals stabilized by adjacent boron atoms are underexplored reaction intermediates in organic synthesis. This study reports the development of vinyl cyclopropyl diborons (VCPDBs) as a versatile source of previously unknown homoallylic α,α-diboryl radicals via thiyl radical catalyzed diboron-directed ring opening. These diboryl stabilized radicals underwent smooth [3+2] cycloaddition with a variety of olefins to provide diboryl cyclopentanes in good to excellent diastereoselectivity. In contrast to the trans-diastereoselectivity observed with most of the dicarbonyl activated VCPs, the cycloaddition of VCPDBs showed a remarkable preference for formation of cis-cyclopentane diastereomer which was confirmed by quantitative NOE and 2D NOESY studies. The cis-stereochemistry of cyclopentane products enabled a concise intramolecular Heck reaction approach to rare tricyclic cyclopentanoid framework containing the diboron group. The mild reaction conditions also allowed a one-pot VCP ring-opening, cycloaddition-oxidation sequence to afford disubstituted cyclopentanones. Control experiments and DFT analysis of reaction mechanism support a radical mediated pathway and provide a rationale for the observed diastereoselectivity. To the authors' knowledge, these are the first examples of the use of geminal diboryl group as an activator of VCP ring opening and cycloaddition reaction of α-boryl radicals.

3.
Magn Reson Chem ; 62(8): 573-582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511664

RESUMO

ß-lactams are a chemically diverse group of molecules with a wide range of biological activities. Having recently observed curious trends in 2JHH coupling values in studies on this structural class, we sought to obtain a more comprehensive understanding of these diagnostic NMR parameters, specifically interrogating 1JCH, 2JCH, and 2JHH, to differentiate 3- and 4-monosubstituted ß-lactams. Further investigation using computational chemistry methods was employed to explore the geometric and electronic origins for the observed and calculated differences between the two substitution patterns.

4.
Phys Chem Chem Phys ; 25(16): 11080-11084, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37060146

RESUMO

NMR pulse sequences visualizing 1JCC and nJCC bond connectivity via an intermediate state of 13C-13C double-quantum coherence and 1H detection are an indispensable tool to solve small-molecule structures at the natural abundance level of 13C. A longstanding issue with these experiments set up to display 2D spectra with single-quantum frequencies is that in addition to the 1H-13C-13C correlations of interest, appearance of HSQC-type artifacts can complicate analysis and obscure JCC connectivities. The origin of these artifacts is described and remedies for their suppression are introduced. They include refocusing of 1JCH couplings prior to creation of 13C-13C double-quantum coherence, which is known to enhance sensitivity by reducing loss into zero-quantum coherence for pairs of two protonated 13C.

5.
J Nat Prod ; 86(7): 1862-1869, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37432113

RESUMO

Rapamycin, a well-known macrocyclic natural product with myriad biological activities, has been the subject of intense study since its first isolation and characterization over five decades ago. Rapamycin has been found to adopt a single conformation in the solid state (both when protein bound and uncomplexed) and exists as a mixture of two conformations in solution. Early work established that the major conformer in solution is the trans amide isomer but left the minor conformer mostly uncharacterized. Since that time, it has been widely accepted that the minor conformer of rapamycin is the cis amide, based solely on analogy to FK-506, another potent immunosuppressive compound with some shared key structural elements. To address this long-standing and unresolved question, the solution structure of the minor conformer of rapamycin was investigated using a combination of NMR techniques and computational methods and determined to be a trans amide species with rotation about the ester linkage.


Assuntos
Amidas , Sirolimo , Conformação Molecular , Isomerismo , Espectroscopia de Ressonância Magnética , Sirolimo/farmacologia , Conformação Proteica
6.
Chirality ; 35(9): 540-548, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37142400

RESUMO

Cannabicitran is a cannabinoid found in levels up to ~10% in commercial "purified" cannabidiol (CBD) extracts. The structure of this natural product was first reported more than 50 years ago. However, few studies have investigated cannabicitran or its origin despite the rapidly increasing interest in the use of cannabinoids for the treatment of a wide range of physiological conditions. Following on a recent detailed NMR and computational characterization of cannabicitran, our group initiated ECD and TDDFT studies aimed at unequivocally determining the absolute configuration of cannabicitran present in Cannabis sativa extracts. To our surprise, we discovered the natural product was racemic, raising questions around its presumed enzymatic origin. Herein, we report the isolation and absolute configuration of (-)-cannabicitran and (+)-cannabicitran. Several possible scenarios for production of the racemate in the plant and/or during extract processing are discussed.


Assuntos
Canabidiol , Canabinoides , Cannabis , Estereoisomerismo , Canabidiol/química , Cannabis/química , Extratos Vegetais/química
7.
Magn Reson Chem ; 61(4): 248-252, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36416132

RESUMO

Benzoic acid esters represent key building blocks for many drug discovery and development programs and have been advanced as potent PDE4 inhibitors for inhaled administration for treatment of respiratory diseases. This class of compounds has also been employed in myriad industrial processes and as common food preservatives. Recent work directed toward the synthesis of intermediates for a proprietary medicinal chemistry program led us to observe that the 1 H NMR chemical shifts of substituents ortho to the benzoic acid ester moiety defied conventional iterative chemical shift prediction protocols. To explore these unexpected results, we initiated a detailed computational study employing density functional theory (DFT) calculations to better understand the unexpectedly large variance in expected versus experimental NMR chemical shifts.


Assuntos
Ácido Benzoico , Ésteres , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética
8.
Magn Reson Chem ; 61(1): 22-31, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166190

RESUMO

Chloride is the most common counterion used to improve aqueous solubility and enhance stability of small molecule active pharmaceutical ingredients. While several analytical techniques, such as titration, HPLC with charged aerosol detection, and ion chromatography, are currently utilized to assay the level of chloride, they have notable limitations, and these instruments may not be readily available. Here, we present a generally applicable 35 Cl solution NMR method to assay the level of chloride in pharmaceutical compounds. The method uses KClO4 as an internal standard for improved accuracy in comparison with external standard methods, and it was found to be robust, linear over three orders of magnitude, precise (<3% RSD), and accurate (<0.5% absolute error).


Assuntos
Cloretos , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética , Solubilidade , Preparações Farmacêuticas
9.
Magn Reson Chem ; 61(3): 169-179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36349476

RESUMO

The recently reported 19 F-detected dual-optimized inverted 1 JCC 1,n-ADEQUATE experiment and the previously reported 1 H-detected version have been modified to incorporate J-modulation, making it feasible to acquire all 1,1- and 1,n-ADEQUATE correlations as well as 1 JCC and n JCC homonuclear scalar couplings in a single experiment. The experiments are demonstrated using N,N-dimethylamino-2,5,6-trifluoro-3,4-phthalonitrile and N,N-dimethylamino-3,4-phthalonitrile.

10.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985422

RESUMO

Density functional theory (DFT) benchmark studies of 1H and 13C NMR chemical shifts often yield differing conclusions, likely due to non-optimal test molecules and non-standardized data acquisition. To address this issue, we carefully selected and measured 1H and 13C NMR chemical shifts for 50 structurally diverse small organic molecules containing atoms from only the first two rows of the periodic table. Our NMR dataset, DELTA50, was used to calculate linear scaling factors and to evaluate the accuracy of 73 density functionals, 40 basis sets, 3 solvent models, and 3 gauge-referencing schemes. The best performing DFT methodologies for 1H and 13C NMR chemical shift predictions were WP04/6-311++G(2d,p) and ωB97X-D/def2-SVP, respectively, when combined with the polarizable continuum solvent model (PCM) and gauge-independent atomic orbital (GIAO) method. Geometries should be optimized at the B3LYP-D3/6-311G(d,p) level including the PCM solvent model for the best accuracy. Predictions of 20 organic compounds and natural products from a separate probe set had root-mean-square deviations (RMSD) of 0.07 to 0.19 for 1H and 0.5 to 2.9 for 13C. Maximum deviations were less than 0.5 and 6.5 ppm for 1H and 13C, respectively.

11.
Phys Chem Chem Phys ; 24(34): 20164-20182, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35996986

RESUMO

Prediction of anisotropic NMR data directly from solute-medium interaction is of significant theoretical and practical interest, particularly for structure elucidation, configurational analysis and conformational studies of complex organic molecules and natural products. Current prediction methods require an explicit structural model of the alignment medium: a requirement either impossible or impractical on a scale necessary for small organic molecules. Here we formulate a comprehensive mathematical framework for a parametrization protocol that deconvolutes an arbitrary surface of the medium into several simple local landscapes that are distributed over the medium's surface by specific orientational order parameters. The shapes and order parameters of these local landscapes are determined via fitting that maximizes the congruence between experimentally determined anisotropic NMR measurables and their predicted counterparts, thus avoiding the need for an a priori knowledge of the global medium morphology. This method achieves substantial improvements in the accuracy of predicted anisotropic NMR values compared to current methods, as demonstrated herein with sixteen natural products. Furthermore, because this formalism extracts structural commonalities of the medium by combining anisotropic NMR data from different compounds, its robustness and accuracy are expected to improve as more experimental data become available for further re-optimization of fitting parameters.


Assuntos
Produtos Biológicos , Imageamento por Ressonância Magnética , Anisotropia , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular
12.
Magn Reson Chem ; 60(2): 196-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617621

RESUMO

Cannabicitran is an important cannabinoid natural product produced by Cannabis sativa and is often found at surprisingly high levels (up to ~10%) in "purified" commercial cannabidiol (CBD) extract preparations. Despite the prevalence of this molecule in CBD oil and other cannabinoid-related products, and the rapidly expanding interest in cannabinoids for treatment of a wide range of physiological conditions, only unassigned 1 H NMR data and partial unambiguous 13 C assignments have been published. Herein, we report the complete 1 H and 13 C NMR assignments of cannabicitran and comparatively evaluate the performance of several density functional theory (DFT) methods with varying levels of theory for the calculation of NMR chemical shifts.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/química , Cannabis/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
13.
Magn Reson Chem ; 60(2): 210-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34469610

RESUMO

Modification of the recently reported 19 F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1 JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1 JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1 JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.

14.
Magn Reson Chem ; 59(6): 628-640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33486827

RESUMO

Polyfluorinated and perfluorinated compounds in the environment are a growing health concern. 19 F-detected variants of commonly employed heteronuclear shift correlation experiments such as heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are available; 19 F-detected experiments that employ carbon-carbon homonuclear coupling, in contrast, have never been reported. Herein, we report the measurement of the 1 JCC and n JCC coupling constants of a simple perfluorinated phthalonitrile and the first demonstration of a 19 F-detected 1,1-ADEQUATE experiment.

15.
J Am Chem Soc ; 142(30): 13170-13179, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32609512

RESUMO

Thiopeptides are a broad class of macrocyclic, heavily modified peptide natural products that are unified by the presence of a substituted, nitrogen-containing heterocycle core. Early work indicated that this core might be fashioned from two dehydroalanines by an enzyme-catalyzed aza-[4 + 2] cycloaddition to give a cyclic-hemiaminal intermediate. This common intermediate could then follow a reductive path toward a dehydropiperidine, as in the thiopeptide thiostrepton, or an aromatization path to yield the pyridine groups observed in many other thiopeptides. Although several of the enzymes proposed to perform this cycloaddition have been reconstituted, only pyridine products have been isolated and any hemiaminal intermediates have yet to be observed. Here, we identify the conditions and substrates that decouple the cycloaddition from subsequent steps and allow interception and characterization of this long hypothesized intermediate. Transition state modeling indicates that the key amide-iminol tautomerization is the major hurdle in an otherwise energetically favorable cycloaddition. An anionic model suggests that deprotonation and polarization of this amide bond by TbtD removes this barrier and provides a sufficient driving force for facile (stepwise) cycloaddition. This work provides evidence for a mechanistic link between disparate cyclases in thiopeptide biosynthesis.


Assuntos
Liases/metabolismo , Tioestreptona/biossíntese , Biocatálise , Reação de Cicloadição , Liases/química , Conformação Proteica , Tioestreptona/química
16.
Mol Pharm ; 17(2): 530-540, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31895571

RESUMO

Novel treatment routes are emerging for an array of diseases and afflictions. Complex dosage forms, based on active pharmaceutical ingredients (APIs) with previously undesirable physicochemical characteristics, are becoming mainstream and actively pursued in various pipeline initiatives. To fundamentally understand how constituents in these dosage forms interact on a molecular level, analytical methods need to be developed that encompass selectivity and sensitivity requirements previously reserved for a myriad of in vitro techniques. The knowledge of precise chemical interactions between drugs and excipients in a dosage form can streamline formulation development and process screening capabilities through the identification of properties that influence rates and mechanisms of drug release in a cost-effective manner, relative to long-term in vivo studies. Through this work, a noncompendial in vitro release (IVR) method was developed that distinguished the presence of individual components in a complex crystalline nanosuspension environment. Doravirine was formulated as a series of long-acting injectable nanosuspensions with assorted excipients, using low- and high-energy wet media milling methods. IVR behavior of all formulation components were monitored using a robust continuous flow-through (CFT) dissolution setup (USP-4 apparatus) with on-line 1H NMR end-analysis (flow-NMR). Results from this investigation led to a better understanding of formulation parameter influences on nanosuspension stability, surface chemistry, and dissolution behavior. Flow-NMR can be applied to a broad range of dosage forms in which specific molecular interactions from the solution microenvironment require further insight to enhance product development capabilities.


Assuntos
Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Injeções , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/administração & dosagem , Suspensões/administração & dosagem , Suspensões/farmacocinética , Química Farmacêutica/instrumentação , Estabilidade de Medicamentos , Excipientes/química , Técnicas In Vitro/métodos , Nanopartículas/química , Tamanho da Partícula , Piridonas/química , Solubilidade , Triazóis/química
17.
Magn Reson Chem ; 58(7): 625-640, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912914

RESUMO

Nonuniform sampling (NUS) strategies are developed for acquiring highly resolved 1,1-ADEQUATE spectra, in both conventional and homodecoupled (HD) variants with improved sensitivity. Specifically, the quantile-directed and Poisson gap methods were critically compared for distributing the samples nonuniformly, and the quantile schedules were further optimized for weighting. Both maximum entropy and iterative soft thresholding spectral estimation algorithms were evaluated. All NUS approaches were robust when the degree of data reduction is moderate, on the order of a 50% reduction of sampling points. Further sampling reduction by NUS is facilitated by using weighted schedules designed by the quantile method, which also suppresses sampling noise well. Seed independence and the ability to specify the sample weighting in quantile scheduling are important in optimizing NUS for 1,1-ADEQUATE data acquisition. Using NUS yields an improvement in sensitivity, while also making longer evolution times accessible that would be difficult or impractical to attain by uniform sampling. Theoretical predictions for the sensitivity enhancements in these experiments are in the range of 5-20%; NUS is shown to disambiguate weak signals, reveal some n JCC correlations obscured by noise, and improve signal strength relative to uniform sampling in the same experimental time. This work presents sample schedule development for applying NUS to challenging experiments. The schedules developed here are made available for general use and should facilitate the broader utilization of ADEQUATE experiments (including 1,1-, 1,n-, and HD- variants) for challenging structure elucidation problems.

18.
Angew Chem Int Ed Engl ; 59(15): 6172-6176, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971323

RESUMO

Correct structural assignment of small molecules and natural products is critical for drug discovery and organic chemistry. Anisotropy-based NMR spectroscopy is a powerful tool for the structural assignment of organic molecules, but it relies on the utilization of a medium that disrupts the isotropic motion of molecules in organic solvents. Here, we establish a quantitative correlation between the atomic structure of the alignment medium, the molecular structure of the small molecule, and molecule-specific anisotropic NMR parameters. The quantitative correlation uses an accurate three-dimensional molecular alignment model that predicts residual dipolar couplings of small molecules aligned by poly(γ-benzyl-l-glutamate). The technique facilitates reliable determination of the correct stereoisomer and enables unequivocal, rapid determination of complex molecular structures from extremely sparse NMR data.

19.
J Org Chem ; 84(16): 10024-10031, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31283876

RESUMO

Retro-Brook rearrangements refer to the intramolecular migration of a silyl group from oxygen to carbon. In this study, we report a novel propargylic retro-Brook rearrangement observed in terminal alkynes bearing a silyl ether moiety. Retro-Brook rearrangements involving [1,2]-, [1,4]-, and [1,5]-migrations are described, affording propargylsilanes in reasonable yield. The reaction mechanism was investigated experimentally by deuterium quenching and rationalized by density functional theory calculations. The terminal alkyne and the subsequent propargyl/allenyl dianion were shown to be crucial for the reaction favoring the retro-Brook rearrangement product over the Brook rearrangement. The second deprotonation at the propargylic position was determined to be the rate-limiting step. In addition, a gas-phase Brook-type rearrangement of the propargylsilanes was observed under GC-MS conditions. This observation was also further confirmed by DFT calculations.

20.
J Org Chem ; 83(21): 13256-13266, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280904

RESUMO

NMR-guided isolation (based on 1D 1H and 13C NMR resonances consistent with a chlorovinylidene moiety) resulted in the characterization of five new highly functionalized polyketides, trichophycins B-F (1-5), and one nonchlorinated metabolite tricholactone (6) from a collection of Trichodesmium bloom material from the Gulf of Mexico. The planar structures of 1-6 were determined using 1D and 2D NMR spectroscopy, mass spectrometry, and complementary spectroscopic procedures. Absolute configuration analysis of 1 and 2 were carried out by 1H NMR analysis of diastereomeric Mosher esters in addition to ECD spectroscopy, J-based configuration analysis, and DFT calculations. The absolute configurations of 3-6 were proposed on the basis of comparative analysis of 13C NMR chemical shifts, relative configurations, and optical rotation values to compounds 1 and 2. Compounds 1-5 represent new additions to the trichophycin family and are hallmarked by a chlorovinylidene moiety. These new trichophycins and tricholactone (1-6) feature intriguing variations with respect to putative biosynthetic starting units, halogenation, and terminations, and trichophycin E (4) features a rare alkynyl bromide functionality. The phenyl-containing trichophycins showed low cytotoxicity to neuro-2A cells, while the alkyne-containing trichophycins showed no toxicity.


Assuntos
Proliferação Nociva de Algas , Policetídeos/química , Trichodesmium/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA