Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34635596

RESUMO

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

2.
Opt Lett ; 48(1): 13-16, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563362

RESUMO

Combined lidar and polarimeter retrievals of aerosol, cloud, and ocean microphysical properties involve single-scattering cloud calculations that are time consuming. We create a look-up table to speed up these calculations for water droplets in the atmosphere. In our new Lorenz-Mie look-up table we tabulate the light scattering by an ensemble of homogeneous isotropic spheres at wavelengths starting from 0.35 µm. The look-up table covers liquid water cloud particles with radii in the range of 0.001-500 µm while gaining an increase of up to 104 in computational speed. The covered complex refractive indices range from 1.25 to 1.36 for the real part and from 0 to 0.001 for the imaginary part. We show that we can precisely compute inherent optical properties for the particle size distributions ranging up to 100 µm for the effective radius and up to 0.6 for the effective variance. We test wavelengths from 0.35 to 2.3 µm and find that the elements of the normalized scattering matrix as well as the asymmetry parameter, the absorption, backscatter, extinction, and scattering coefficients are precise to within 1% for 96.7%-100% of cases depending on the inherent optical property. We also provide an example of using the look-up table with in situ measurements to determine agreement with remote sensing. The table together with C++, Fortran, MATLAB, and Python codes to interpolate the complex refractive index and apply different particle size distributions are freely available online.

3.
Nature ; 543(7645): 411-415, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300096

RESUMO

Aviation-related aerosol emissions contribute to the formation of contrail cirrus clouds that can alter upper tropospheric radiation and water budgets, and therefore climate. The magnitude of air-traffic-related aerosol-cloud interactions and the ways in which these interactions might change in the future remain uncertain. Modelling studies of the present and future effects of aviation on climate require detailed information about the number of aerosol particles emitted per kilogram of fuel burned and the microphysical properties of those aerosols that are relevant for cloud formation. However, previous observational data at cruise altitudes are sparse for engines burning conventional fuels, and no data have previously been reported for biofuel use in-flight. Here we report observations from research aircraft that sampled the exhaust of engines onboard a NASA DC-8 aircraft as they burned conventional Jet A fuel and a 50:50 (by volume) blend of Jet A fuel and a biofuel derived from Camelina oil. We show that, compared to using conventional fuels, biofuel blending reduces particle number and mass emissions immediately behind the aircraft by 50 to 70 per cent. Our observations quantify the impact of biofuel blending on aerosol emissions at cruise conditions and provide key microphysical parameters, which will be useful to assess the potential of biofuel use in aviation as a viable strategy to mitigate climate change.


Assuntos
Aeronaves/instrumentação , Biocombustíveis/análise , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle , Aerossóis/análise , Aerossóis/química , Aquecimento Global/prevenção & controle , Efeito Estufa/prevenção & controle , Material Particulado/química
4.
Geophys Res Lett ; 49(18): e2022GL099175, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36591326

RESUMO

Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign we find that mid-visible smoke MEE can change by a factor of 2-3 between fresh smoke (<2 hr old) and one-day-old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory. Real(n) estimates derived from multiple days of FIREX-AQ measurements increase with age (from 1.40 - 1.45 to 1.5-1.54 from fresh to one-day-old) and are found to be positively correlated with organic aerosol oxidation state and aerosol size, and negatively correlated with smoke volatility. Future laboratory, field, and modeling studies should focus on better understanding and parameterizing these relationships to fully represent smoke aging.

5.
Geophys Res Lett ; 48(23)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35136274

RESUMO

Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154-0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.

6.
Sci Data ; 10(1): 471, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474611

RESUMO

In-situ marine cloud droplet number concentrations (CDNCs), cloud condensation nuclei (CCN), and CCN proxies, based on particle sizes and optical properties, are accumulated from seven field campaigns: ACTIVATE; NAAMES; CAMP2EX; ORACLES; SOCRATES; MARCUS; and CAPRICORN2. Each campaign involves aircraft measurements, ship-based measurements, or both. Measurements collected over the North and Central Atlantic, Indo-Pacific, and Southern Oceans, represent a range of clean to polluted conditions in various climate regimes. With the extensive range of environmental conditions sampled, this data collection is ideal for testing satellite remote detection methods of CDNC and CCN in marine environments. Remote measurement methods are vital to expanding the available data in these difficult-to-reach regions of the Earth and improving our understanding of aerosol-cloud interactions. The data collection includes particle composition and continental tracers to identify potential contributing CCN sources. Several of these campaigns include High Spectral Resolution Lidar (HSRL) and polarimetric imaging measurements and retrievals that will be the basis for the next generation of space-based remote sensors and, thus, can be utilized as satellite surrogates.

7.
J Air Waste Manag Assoc ; 62(4): 420-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22616284

RESUMO

The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2, total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of approximately 90% for SO2 and particle mass EIs and approximately 60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of approximately 5 as compared with JP-8.


Assuntos
Poluentes Atmosféricos/química , Aeronaves , Gás Natural , Emissões de Veículos/análise , Carvão Mineral , Tamanho da Partícula , Material Particulado , Petróleo
8.
J Geophys Res Atmos ; 127(21): e2022JD037201, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36590057

RESUMO

Ångström exponents (α) allow reconstruction of aerosol optical spectra over a broad range of wavelengths from measurements at two or more wavelengths. Hyperspectral measurements of atmospheric aerosols provide opportunities to probe measured spectra for information inaccessible from only a few wavelengths. Four sets of hyperspectral in situ aerosol optical coefficients (aerosol-phase total extinction, σ ext, and absorption, σ abs; liquid-phase soluble absorption from methanol, σ MeOH-abs, and water, σ DI-abs, extracts) were measured from biomass burning aerosols (BBAs). Hyperspectral single scattering albedo (ω), calculated from σ ext and σ abs, provide spectral resolution over a wide spectral range rare for this optical parameter. Observed spectral shifts between σ abs and σ MeOH-abs/σ DI-abs argue in favor of measuring σ abs rather than reconstructing it from liquid extracts. Logarithmically transformed spectra exhibited curvature better fit by second-order polynomials than linear α. Mapping second order fit coefficients (a 1, a 2) revealed samples from a given fire tended to cluster together, that is, aerosol spectra from a given fire were similar to each other and somewhat distinct from others. Separation in (a 1, a 2) space for spectra with the same α suggest additional information in second-order parameterization absent from the linear fit. Spectral features found in the fit residuals indicate more information in the measured spectra than captured by the fits. Above-detection σ MeOH-abs at 0.7 µm suggests assuming all absorption at long visible wavelengths is BC to partition absorption between BC and brown carbon (BrC) overestimates BC and underestimates BrC across the spectral range. Hyperspectral measurements may eventually discriminate BBA among fires in different ecosystems under variable conditions.

9.
Atmos Chem Phys ; 21(21): 16121-16141, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34819950

RESUMO

North American pollution outflow is ubiquitous over the western North Atlantic Ocean, especially in winter, making this location a suitable natural laboratory for investigating the impact of precipitation on aerosol particles along air mass trajectories. We take advantage of observational data collected at Bermuda to seasonally assess the sensitivity of aerosol mass concentrations and volume size distributions to accumulated precipitation along trajectories (APT). The mass concentration of particulate matter with aerodynamic diameter less than 2.5 µm normalized by the enhancement of carbon monoxide above background (PM2.5/ΔCO) at Bermuda was used to estimate the degree of aerosol loss during transport to Bermuda. Results for December-February (DJF) show that most trajectories come from North America and have the highest APTs, resulting in a significant reduction (by 53 %) in PM2.5/ΔCO under high-APT conditions (> 13.5 mm) relative to low-APT conditions (< 0.9 mm). Moreover, PM2.5/ΔCO was most sensitive to increases in APT up to 5 mm (-0.044 µg m-3 ppbv-1 mm-1) and less sensitive to increases in APT over 5 mm. While anthropogenic PM2.5 constituents (e.g., black carbon, sulfate, organic carbon) decrease with high APT, sea salt, in contrast, was comparable between high- and low-APT conditions owing to enhanced local wind and sea salt emissions in high-APT conditions. The greater sensitivity of the fine-mode volume concentrations (versus coarse mode) to wet scavenging is evident from AErosol RObotic NETwork (AERONET) volume size distribution data. A combination of GEOS-Chem model simulations of the 210Pb submicron aerosol tracer and its gaseous precursor 222Rn reveals that (i) surface aerosol particles at Bermuda are most impacted by wet scavenging in winter and spring (due to large-scale precipitation) with a maximum in March, whereas convective scavenging plays a substantial role in summer; and (ii) North American 222Rn tracer emissions contribute most to surface 210Pb concentrations at Bermuda in winter (~75 %-80 %), indicating that air masses arriving at Bermuda experience large-scale precipitation scavenging while traveling from North America. A case study flight from the ACTIVATE field campaign on 22 February 2020 reveals a significant reduction in aerosol number and volume concentrations during air mass transport off the US East Coast associated with increased cloud fraction and precipitation. These results highlight the sensitivity of remote marine boundary layer aerosol characteristics to precipitation along trajectories, especially when the air mass source is continental outflow from polluted regions like the US East Coast.

10.
Atmos Chem Phys ; 21(13): 10499-10526, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34377145

RESUMO

Cloud drop number concentrations (N d) over the western North Atlantic Ocean (WNAO) are generally highest during the winter (DJF) and lowest in summer (JJA), in contrast to aerosol proxy variables (aerosol optical depth, aerosol index, surface aerosol mass concentrations, surface cloud condensation nuclei (CCN) concentrations) that generally peak in spring (MAM) and JJA with minima in DJF. Using aircraft, satellite remote sensing, ground-based in situ measurement data, and reanalysis data, we characterize factors explaining the divergent seasonal cycles and furthermore probe into factors influencing N d on seasonal timescales. The results can be summarized well by features most pronounced in DJF, including features associated with cold-air outbreak (CAO) conditions such as enhanced values of CAO index, planetary boundary layer height (PBLH), low-level liquid cloud fraction, and cloud-top height, in addition to winds aligned with continental outflow. Data sorted into high- and low-N d days in each season, especially in DJF, revealed that all of these conditions were enhanced on the high-N d days, including reduced sea level pressure and stronger wind speeds. Although aerosols may be more abundant in MAM and JJA, the conditions needed to activate those particles into cloud droplets are weaker than in colder months, which is demonstrated by calculations of the strongest (weakest) aerosol indirect effects in DJF (JJA) based on comparing N d to perturbations in four different aerosol proxy variables (total and sulfate aerosol optical depth, aerosol index, surface mass concentration of sulfate). We used three machine learning models and up to 14 input variables to infer about most influential factors related to N d for DJF and JJA, with the best performance obtained with gradient-boosted regression tree (GBRT) analysis. The model results indicated that cloud fraction was the most important input variable, followed by some combination (depending on season) of CAO index and surface mass concentrations of sulfate and organic carbon. Future work is recommended to further understand aspects uncovered here such as impacts of free tropospheric aerosol entrainment on clouds, degree of boundary layer coupling, wet scavenging, and giant CCN effects on aerosol-N d relationships, updraft velocity, and vertical structure of cloud properties such as adiabaticity that impact the satellite estimation of N d.

11.
Environ Sci Technol ; 44(24): 9530-4, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21090602

RESUMO

In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.


Assuntos
Poluentes Atmosféricos/análise , Aeronaves , Lubrificantes/análise , Óleos/análise , Emissões de Veículos/análise , Aerossóis/análise , Atmosfera/química , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise
12.
Aerosol Sci Technol ; 54(12): 1542-1555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204049

RESUMO

A particle-into-liquid sampler (PILS) was coupled to a flow-through conductivity cell to provide a continuous, nondestructive, online measurement in support of offline ion chromatography analysis. The conductivity measurement provides a rapid assessment of the total ion concentration augmenting slower batch-sample data from offline analysis and is developed primarily to assist airborne measurements, where fast time-response is essential. A conductivity model was developed for measured ions and excellent closure was derived for laboratory-generated aerosols (97% conductivity explained, R2 > 0.99). The PILS-conductivity measurement was extensively tested throughout the NASA Cloud, Aerosol and Monsoon Processes: Philippines Experiment (CAMP2Ex) during nineteen research flights. A diverse range of ambient aerosol was sampled from biomass burning, fresh and aged urban pollution, and marine sources. Ambient aerosol did not exhibit the same degree of closure as the laboratory aerosol, with measured ions only accountable for 43% of the conductivity. The remaining fraction of the conductivity was examined in combination with ion charge balance and found to provide additional supporting information for diagnosing and modeling particle acidity. An urban plume case study was used to demonstrate the utility of the measurement for supplementing compositional data and augmenting the temporal capability of the PILS.

13.
Atmos Meas Tech ; 11(9): 5025-5048, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-33868504

RESUMO

A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational fluid dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5 mL min-1 was achieved. This allowed samples to be collected over 1-2 min under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30 %, over a range of several orders of magnitude.

14.
Sci Data ; 4: 170198, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257135

RESUMO

We present ground-based, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine take-off plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plume-average emissions indices that are suitable for modelling aircraft emissions. Total and non-volatile particle number EIs are of order 1016-1017 kg-1 and 1014-1016 kg-1, respectively. Black-carbon-equivalent particle mass EIs vary between 175-941 mg kg-1 (except for the GE GEnx engines at 46 mg kg-1). Aircraft tail numbers recorded for each take-off event are used to incorporate aircraft- and engine-specific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturer-reported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA