Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2014): 20232155, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38196357

RESUMO

The detection of optic flow is important for generating optomotor responses to mediate retinal image stabilization, and it can also be used during ongoing locomotion for centring and velocity control. Previous work in hummingbirds has separately examined the roles of optic flow during hovering and when centring through a narrow passage during forward flight. To develop a hypothesis for the visual control of forward flight velocity, we examined the behaviour of hummingbirds in a flight tunnel where optic flow could be systematically manipulated. In all treatments, the animals exhibited periods of forward flight interspersed with bouts of spontaneous hovering. Hummingbirds flew fastest when they had a reliable signal of optic flow. All optic flow manipulations caused slower flight, suggesting that hummingbirds had an expected optic flow magnitude that was disrupted. In addition, upward and downward optic flow drove optomotor responses for maintaining altitude during forward flight. When hummingbirds made voluntary transitions to hovering, optomotor responses were observed to all directions. Collectively, these results are consistent with hummingbirds controlling flight speed via mechanisms that use an internal forward model to predict expected optic flow whereas flight altitude and hovering position are controlled more directly by sensory feedback from the environment.


Assuntos
Altitude , Aves , Animais , Retroalimentação Sensorial , Locomoção
2.
Artigo em Inglês | MEDLINE | ID: mdl-38521869

RESUMO

For most quadrupeds, locomotion involves alternating movements of the fore- and hindlimbs. In birds, however, while walking generally involves alternating movements of the legs, to generate lift and thrust, the wings are moved synchronously with each other. Neural circuits in the spinal cord, referred to as central pattern generators (CPGs), are the source of the basic locomotor rhythms and patterns. Given the differences in the patterns of movement of the wings and legs, it is likely that the neuronal components and connectivity of the CPG that coordinates wing movements differ from those that coordinate leg movements. In this study, we used in vitro preparations of embryonic chicken spinal cords (E11-E14) to compare the neural responses of spinal CPGs that control and coordinate wing flapping with those that control alternating leg movements. We found that in response to N-methyl-D-aspartate (NMDA) or a combination of NMDA and serotonin (5-HT), the intact chicken spinal cord produced rhythmic outputs that were synchronous both bilaterally and between the wing and leg segments. Despite this, we found that this rhythmic output was disrupted by an antagonist of glycine receptors in the lumbosacral (legs), but not the brachial (wing) segments. Thus, our results provide evidence of differences between CPGs that control the wings and legs in the spinal cord of birds.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37542566

RESUMO

Avian flight is guided by optic flow-the movement across the retina of images of surfaces and edges in the environment due to self-motion. In all vertebrates, there is a short pathway for optic flow information to reach pre-motor areas: retinal-recipient regions in the midbrain encode optic flow, which is then sent to the cerebellum. One well-known role for optic flow pathways to the cerebellum is the control of stabilizing eye movements (the optokinetic response). However, the role of this pathway in controlling locomotion is less well understood. Electrophysiological and tract tracing studies are revealing the functional connectivity of a more elaborate circuit through the avian cerebellum, which integrates optic flow with other sensory signals. Here we review the research supporting this framework and identify the cerebellar output centres, the lateral (CbL) and medial (CbM) cerebellar nuclei, as two key nodes with potentially distinct roles in flight control. The CbM receives bilateral optic flow information and projects to sites in the brainstem that suggest a primary role for flight control over time, such as during forward flight. The CbL receives monocular optic flow and other types of visual information. This site provides feedback to sensory areas throughout the brain and has a strong projection the nucleus ruber, which is known to have a dominant role in forelimb muscle control. This arrangement suggests primary roles for the CbL in the control of wing morphing and for rapid maneuvers.


Assuntos
Fluxo Óptico , Animais , Mesencéfalo , Tronco Encefálico , Encéfalo , Aves , Locomoção
4.
Artigo em Inglês | MEDLINE | ID: mdl-36522507

RESUMO

Eye movements are a critical component of visually guided behaviours, allowing organisms to scan the environment and bring stimuli of interest to regions of acuity in the retina. Although the control and modulation of eye movements by cranial nerve nuclei are highly conserved across vertebrates, species variation in visually guided behaviour and eye morphology could lead to variation in the size of oculomotor nuclei. Here, we test for differences in the size and neuron numbers of the oculomotor nuclei among birds that vary in behaviour and eye morphology. Using unbiased stereology, we measured the volumes and numbers of neurons of the oculomotor (nIII), trochlear (nIV), abducens (nVI), and Edinger-Westphal (EW) nuclei across 71 bird species and analysed these with phylogeny-informed statistics. Owls had relatively smaller nIII, nIV, nVI and EW nuclei than other birds, which reflects their limited degrees of eye movements. In contrast, nVI was relatively larger in falcons and hawks, likely reflecting how these predatory species must shift focus between the central and temporal foveae during foraging and prey capture. Unexpectedly, songbirds had an enlarged EW and relatively more nVI neurons, which might reflect accommodation and horizontal eye movements. Finally, the one merganser we measured also has an enlarged EW, which is associated with the high accommodative power needed for pursuit diving. Overall, these differences reflect species and clade level variation in behaviour, but more data are needed on eye movements in birds across species to better understand the relationships among behaviour, retinal anatomy, and brain anatomy.


Assuntos
Movimentos Oculares , Nervo Oculomotor , Animais , Nervo Oculomotor/fisiologia , Tronco Encefálico/fisiologia , Encéfalo , Aves
5.
Brain Behav Evol ; 98(1): 44-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36455518

RESUMO

Crocodilians (alligators, crocodiles, and gharials) are the closet living relatives to birds and, as such, represent a key clade to understand the evolution of the avian brain. However, many aspects of crocodilian neurobiology remain unknown. In this paper, we address an important knowledge gap as there are no published studies of cerebellar connections in any crocodilian species. We used injections of retrograde tracers into the cerebellum of the American alligator (Alligator mississippiensis) to describe for the first time the origin of climbing and mossy fiber inputs. We found that inputs to the cerebellum in the American alligator are similar to those of other nonavian reptiles and birds. Retrograde labeled cells were found in the spinal cord, inferior olive, reticular formation, vestibular and cerebellar nuclei, as well as in nucleus ruber and surrounding tegmentum. Additionally, we found no retrogradely labeled cells in the anterior rhombencephalon which suggest that, like other nonavian reptiles, crocodilians may lack pontine nuclei. Similar to birds and other nonavian reptiles, we found inputs to the cerebellum from the pretectal nucleus lentiformis mesencephali. Additionally, we found retrogradely labeled neurons in two nuclei in the pretectum: the nucleus circularis and the interstitial nucleus of the posterior commissure. These pretectal projections have not been described in any other nonavian reptile to date, but they do resemble projections from the nucleus spiriformis medialis of birds. Our results show that many inputs to the cerebellum are highly conserved among sauropsids and that extensive pretectal inputs to the cerebellum are not exclusive to the avian brain. Finally, we suggest that the pontine nuclei of birds are an evolutionary novelty that may have evolved after the last common ancestor between birds and crocodilians, and may represent an intriguing case of convergent evolution with mammals.


Assuntos
Jacarés e Crocodilos , Animais , Cerebelo , Tegmento Mesencefálico , Neurônios , Medula Espinal , Mamíferos
6.
J Neurophysiol ; 127(1): 130-144, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851761

RESUMO

Optokinetic responses function to maintain retinal image stabilization by minimizing optic flow that occurs during self-motion. The hovering ability of hummingbirds is an extreme example of this behavior. Optokinetic responses are mediated by direction-selective neurons with large receptive fields in the accessory optic system (AOS) and pretectum. Recent studies in hummingbirds showed that, compared with other bird species, 1) the pretectal nucleus lentiformis mesencephali (LM) is hypertrophied, 2) LM has a unique distribution of direction preferences, and 3) LM neurons are more tightly tuned to stimulus velocity. In this study, we sought to determine if there are concomitant changes in the nucleus of the basal optic root (nBOR) of the AOS. We recorded the visual response properties of nBOR neurons to large-field-drifting random dot patterns and sine-wave gratings in Anna's hummingbirds and zebra finches and compared these with archival data from pigeons. We found no differences with respect to the distribution of direction preferences: Neurons responsive to upward, downward, and nasal-to-temporal motion were equally represented in all three species, and neurons responsive to temporal-to-nasal motion were rare or absent (<5%). Compared with zebra finches and pigeons, however, hummingbird nBOR neurons were more tightly tuned to stimulus velocity of random dot stimuli. Moreover, in response to drifting gratings, hummingbird nBOR neurons are more tightly tuned in the spatiotemporal domain. These results, in combination with specialization in LM, support a hypothesis that hummingbirds have evolved to be "optic flow specialists" to cope with the optomotor demands of sustained hovering flight.NEW & NOTEWORTHY Hummingbirds have specialized response properties to optic flow in the pretectal nucleus lentiformis mesencephali (LM). The LM works with the nucleus of the basal optic root (nBOR) of the accessory optic system (AOS) to process global visual motion, but whether the neural response specializations observed in the LM extend to the nBOR is unknown. Hummingbird nBOR neurons are more tightly tuned to visual stimulus velocity, and in the spatiotemporal domain, compared with two nonhovering species.


Assuntos
Aves/fisiologia , Mesencéfalo/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Fluxo Óptico/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Animais , Comportamento Animal/fisiologia , Columbidae/fisiologia , Tentilhões/fisiologia , Técnicas de Patch-Clamp , Área Pré-Tectal/fisiologia , Especificidade da Espécie
7.
Brain Behav Evol ; 95(2): 78-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32739912

RESUMO

Although the internal circuitry of the cerebellum is highly conserved across vertebrate species, the size and shape of the cerebellum varies considerably. Recent comparative studies have examined the allometric rules between cerebellar mass and number of neurons, but data are lacking on the numbers and sizes of Purkinje and granule cells or scaling of cerebellar foliation. Here, we investigate the allometric rules that govern variation in the volumes of the layers of the cerebellum, the numbers and sizes of Purkinje cells and granule cells and the degree of the cerebellar foliation across 7 species of galliform birds. We selected Galliformes because they vary greatly in body and brain sizes. Our results show that the molecular, granule and white matter layers all increase in volume at the same rate relative to total cerebellum volume. Both numbers and sizes of Purkinje cells increased with cerebellar volume, but numbers of Purkinje cells increased at a much faster rate than size. Granule cell numbers increased with cerebellar volume, but size did not. Sizes and numbers of Purkinje cells as well as numbers of granule cells were positively correlated with the degree of cerebellar foliation, but granule cell size decreased with higher degrees of foliation. The concerted changes among the volumes of cerebellar layers likely reflects the conserved neural circuitry of the cerebellum. Also, our data indicate that the scaling of cell sizes can vary markedly across neuronal populations, suggesting that evolutionary changes in cell sizes might be more complex than what is often assumed.


Assuntos
Cerebelo/anatomia & histologia , Galliformes/anatomia & histologia , Rede Nervosa/anatomia & histologia , Animais , Contagem de Células , Cerebelo/citologia , Rede Nervosa/citologia , Células de Purkinje/citologia , Especificidade da Espécie
8.
Brain Behav Evol ; 95(1): 45-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155640

RESUMO

While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII-) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII-) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/- stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).


Assuntos
Jacarés e Crocodilos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/enzimologia , Animais
9.
Cerebellum ; 18(3): 544-555, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30904983

RESUMO

Lugaro cells are inhibitory interneurons found in the upper granular layer of the cerebellar cortex, just below or within the Purkinje cell layer. They are characterized by (1) a fusiform soma oriented in the parasagittal plane, (2) two pairs of dendrites emanating from opposite ends of the soma, (3) innervation from Purkinje cell collaterals, and (4) an axon that projects into the molecular layer akin to granular cell parallel fibers. Lugaro cells have been described in mammals, but not in other vertebrate classes, save one report in teleost fish. Here, we propose the existence of Lugaro cells in the avian cerebellum based on the morphological characteristics and connectivity described above. Immunohistochemical staining against the calcium binding protein secretagogin (SCGN) revealed Lugaro-like cells in the pigeon cerebellum. Some SCGN-labeled cells exhibit fusiform somata and dendrites parallel to the Purkinje cell layer in the parasagittal plane, as well as long axons that project into the molecular layer and travel alongside parallel fibers in the coronal plane. While mammalian Lugaro cells are known to express calretinin, the SCGN-labeled cells in the pigeon do not. SCGN-labeled cells also express glutamic acid decarboxylase, confirming their inhibitory function. Calbindin labeling revealed Purkinje cell terminals surrounding the SCGN-expressing cells. Our results suggest that Lugaro cells are more widespread among vertebrates than previously thought and may be a characteristic of the cerebellum of all vertebrates.


Assuntos
Cerebelo/citologia , Columbidae/anatomia & histologia , Interneurônios/citologia , Secretagoginas/biossíntese , Animais , Secretagoginas/análise
10.
J Neurophysiol ; 120(1): 250-262, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589816

RESUMO

The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).


Assuntos
Potenciais de Ação , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/fisiologia , Animais , Columbidae , Feminino , Masculino , Proteínas do Tecido Nervoso/genética , Fluxo Óptico , Células de Purkinje/metabolismo
11.
Cerebellum ; 17(5): 683-684, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29931663

RESUMO

In the original version of this paper, the Title should have been written with "A Consensus paper" to read "Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper".

12.
Cerebellum ; 17(5): 654-682, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29876802

RESUMO

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.


Assuntos
Cerebelo/anatomia & histologia , Cerebelo/fisiologia , Animais , Humanos
13.
Artigo em Inglês | MEDLINE | ID: mdl-29340763

RESUMO

In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. In both pigeons and chickens, retinal inputs to the nBOR arise from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM is a matter of debate. Previous work in chickens had concluded that DGCs do not project to LM, but a recent study in pigeons found that both retinal ganglion cells and DGCs project to LM. These findings leave open the question of whether there are species differences with respect to the DGC projection to LM. In the present study, we made small injections of retrograde tracer into the LM in a zebra finch and an Anna's hummingbird. In both cases, retrogradely labeled retinal ganglion cells and DGCs were observed. These results suggest that a retinal input to the LM arising from DGCs is characteristic of most, if not all, birds.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Corpo Estriado/anatomia & histologia , Corpo Estriado/fisiologia , Retina/anatomia & histologia , Retina/fisiologia , Animais , Masculino , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/fisiologia , Vias Visuais/anatomia & histologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia
14.
Exp Brain Res ; 235(2): 401-406, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743012

RESUMO

Global motion perception is important for mobile organisms. In laterally eyed birds, global motion appears to be processed in the entopallium, a neural structure that is part of the tectofugal pathway. Electrophysiological research has shown that motion selective cells in the entopallium are most responsive to small dark moving targets. Here, we investigated whether this bias toward dark targets of entopallial cells is mirrored by perceptual performance in a motion detection task in pigeons. We measured the detection thresholds of pigeons using random dot stimuli that consisted of either black or white dots on a gray background. We found that thresholds were significantly lower when using black dots as opposed to white dots. This heightened sensitivity is also noted in the learning rates of the pigeons. That is, we found that the pigeons learned the detection task significantly faster when the stimuli consisted of black dots. We believe that our results have important implications for the understanding of the functional role of the entopallium and the ON and OFF pathways in the avian motion system.


Assuntos
Columbidae/fisiologia , Escuridão , Luz , Percepção de Movimento/fisiologia , Comportamento Espacial/fisiologia , Animais , Sensibilidades de Contraste , Estimulação Luminosa , Limiar Sensorial
15.
J Vis ; 17(6): 17, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28654962

RESUMO

The ability to perceive and recognize objects is essential to many animals, including humans. Until recently, models of object recognition have primarily focused on static cues, such as shape, but more recent research is beginning to show that motion plays an important role in object perception. Most studies have focused on rigid motion, a type of motion most often associated with inanimate objects. In contrast, nonrigid motion is often associated with biological motion and is therefore ecologically important to visually dependent animals. In this study, we examined the relative contribution of nonrigid motion and shape to object perception in humans and pigeons, two species that rely extensively on vision. Using a parametric morphing technique to systematically vary nonrigid motion and three-dimensional shape information, we found that both humans and pigeons were able to rely solely on either shape or nonrigid motion information to identify complex objects when one of the two cues was degraded. Humans and pigeons also showed similar 80% accuracy thresholds when the information from both shape and motion cues were degraded. We argue that the use of nonrigid motion for object perception is evolutionarily important and should be considered in general theories of vision at least with respect to visually sophisticated animals.


Assuntos
Percepção de Forma/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adolescente , Adulto , Animais , Columbidae , Sinais (Psicologia) , Feminino , Humanos , Masculino , Adulto Jovem
16.
Brain Behav Evol ; 88(3-4): 177-186, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28099952

RESUMO

Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles.


Assuntos
Cerebelo , Lagartos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje , Animais , Cerebelo/citologia , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Masculino , Células de Purkinje/citologia , Células de Purkinje/metabolismo
17.
Brain Behav Evol ; 87(2): 88-104, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27192984

RESUMO

Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.


Assuntos
Cerebelo/anatomia & histologia , Proteínas do Tecido Nervoso/metabolismo , Paleógnatas/anatomia & histologia , Células de Purkinje/metabolismo , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Nova Zelândia , Células de Purkinje/citologia
18.
Anim Cogn ; 18(4): 945-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25823884

RESUMO

Glass patterns (GPs) are static stimuli that consist of randomly positioned dot-pairs that are spatially integrated to create the perception of a global form. However, when multiple independently generated static GPs are presented sequentially (termed 'dynamic' GP), observers report a percept of coherent motion, and data show an improvement in sensitivity. This increased sensitivity has been attributed to a summation of the form signals provided by the individual GPs. In Experiment 1, we tested whether pigeons also show a heightened sensitivity to dynamic GPs. Our results show that pigeons are significantly better at learning to discriminate dynamic GPs from noise compared with static GPs. However, in contrast to previous research, we found that pigeons did not perform well enough with our static GPs to extract sensitivity measurements. In Experiment 2, we compared our static GPs to those that have been used previously. We show that the difference in the comparison noise patterns is important. We used dipole noise patterns, while previous studies used uniform noise patterns that differ in mean dot spacing to the S+. We argue that prior findings from the use of GPs in pigeons should be re-evaluated using dynamic GP stimuli with noise that consist of dipoles.


Assuntos
Columbidae/fisiologia , Percepção de Movimento/fisiologia , Animais , Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos , Estimulação Luminosa
19.
Brain Behav Evol ; 86(3-4): 176-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587582

RESUMO

Hummingbirds are a group of small, highly specialized birds that display a range of adaptations to their nectarivorous lifestyle. Vision plays a key role in hummingbird feeding and hovering behaviours, yet very little is known about the visual systems of these birds. In this study, we measured eye morphology in 5 hummingbird species. For 2 of these species, we used stereology and retinal whole mounts to study the topographic distribution of neurons in the ganglion cell layer. Eye morphology (expressed as the ratio of corneal diameter to eye transverse diameter) was similar among all 5 species and was within the range previously documented for diurnal birds. Retinal topography was similar in Amazilia tzacatl and Calypte anna. Both species had 2 specialized retinal regions of high neuron density: a central region located slightly dorso-nasal to the superior pole of the pecten, where densities reached ∼ 45,000 cells · mm(-2), and a temporal area with lower densities (38,000-39,000 cells · mm(-2)). A weak visual streak bridged the two high-density areas. A retina from Phaethornis superciliosus also had a central high-density area with a similar peak neuron density. Estimates of spatial resolving power for all 3 species were similar, at approximately 5-6 cycles · degree(-1). Retinal cross sections confirmed that the central high-density region in C. anna contains a fovea, but not the temporal area. We found no evidence of a second, less well-developed fovea located close to the temporal retina margin. The central and temporal areas of high neuron density allow for increased spatial resolution in the lateral and frontal visual fields, respectively. Increased resolution in the frontal field in particular may be important for mediating feeding behaviors such as aerial docking with flowers and catching small insects.


Assuntos
Aves/anatomia & histologia , Olho/anatomia & histologia , Animais , Contagem de Células , Neurônios/citologia , Tamanho do Órgão , Especificidade da Espécie
20.
Brain Behav Evol ; 85(2): 94-106, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871652

RESUMO

Zebrin II (ZII) is a glycolytic enzyme expressed in cerebellar Purkinje cells. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with a high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). To date, ZII expression studies are limited to neognathous birds: pigeons (Columbiformes), chickens (Galliformes), and hummingbirds (Trochilidae). These previous studies divided the avian cerebellum into 5 transverse regions based on the pattern of ZII expression. In the lingular region (lobule I) all Purkinje cells are ZII+. In the anterior region (lobules II-V) there are 4 pairs of ZII+/- stripes. In the central region (lobules VI-VIII) all Purkinje cells are ZII+. In the posterior region (lobules VIII-IX) there are 5-7 pairs of ZII+/- stripes. Finally, in the nodular region (lobule X) all Purkinje cells are ZII+. As the pattern of ZII stripes is quite similar in these disparate species, it appears that it is highly conserved. However, it has yet to be studied in paleognathous birds, which split from the neognaths over 100 million years ago. To better understand the evolution of cerebellar compartmentation in birds, we examined ZII immunoreactivity in a paleognath, the Chilean tinamou (Nothoprocta perdicaria). In the tinamou, Purkinje cells expressed ZII heterogeneously such that there were sagittal ZII+ and ZII- stripes of Purkinje cells, and this pattern of expression was largely similar to that observed in neognathous birds. For example, all Purkinje cells in the lingular (lobule I) and nodular (lobule X) regions were ZII+, and there were 4 pairs of ZII+/- stripes in the anterior region (lobules II-V). In contrast to neognaths, however, ZII was expressed in lobules VI-VII as a series of sagittal stripes in the tinamou. Also unlike in neognaths, stripes were absent in lobule IXab, and all Purkinje cells expressed ZII in the tinamou. The differences in ZII expression between the tinamou and neognaths could reflect behavior, but the general similarity of the expression patterns across all bird species suggests that ZII stripes evolved early in the avian phylogenetic tree.


Assuntos
Proteínas Aviárias/genética , Evolução Biológica , Cerebelo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Paleógnatas/metabolismo , Animais , Expressão Gênica , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA