Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Plant Biol ; 23(1): 220, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098472

RESUMO

BACKGROUND: The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS: In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS: Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.


Assuntos
Espécies em Perigo de Extinção , Variação Genética , Animais , Ecossistema , China , Estruturas Genéticas , Repetições de Microssatélites , Genética Populacional
2.
Phys Rev Lett ; 131(1): 013804, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478443

RESUMO

Cutting a honeycomb lattice (HCL) ends up with three types of edges (zigzag, bearded, and armchair), as is well known in the study of graphene edge states. Here, we propose and demonstrate a distinctive twig-shaped edge, thereby observing new edge states using a photonic platform. Our main findings are (i) the twig edge is a generic type of HCL edge complementary to the armchair edge, formed by choosing the right primitive cell rather than simple lattice cutting or Klein edge modification; (ii) the twig edge states form a complete flat band across the Brillouin zone with zero-energy degeneracy, characterized by nontrivial topological winding of the lattice Hamiltonian; (iii) the twig edge states can be elongated or compactly localized at the boundary, manifesting both flat band and topological features. Although realized here in a photonic graphene, such twig edge states should exist in other synthetic HCL structures. Moreover, our results may broaden the understanding of graphene edge states, as well as new avenues for realization of robust edge localization and nontrivial topological phases based on Dirac-like materials.

3.
Opt Express ; 29(13): 19531-19539, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266062

RESUMO

In this work, we study topological edge and corner states in two-dimensional (2D) Su-Schrieffer-Heeger lattices from designer surface plasmon crystals (DSPCs), where the vertical confinement of the designer surface plasmons enables signal detection without the need of additional covers for the sample. In particular, the formation of higher-order topological insulator can be determined by the two-dimensional Zak phase, and the zero-dimensional subwavelength corner states are found in the designed DSPCs at the terahertz (THz) frequency band together with the edge states. Moreover, the corner state frequency can be tuned by modifying the defect strength, i.e., the location or diameter of the corner pillars. This work may provide a new approach for confining THz waves in DSPCs, which is promising for the development of THz topological photonic integrated devices with high compactness, robustness and tunability.

4.
Biochem J ; 477(12): 2249-2261, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32432317

RESUMO

Aberrant expression of microRNAs (miRNAs) has been associated with spinal ossification of the posterior longitudinal ligament (OPLL). Our initial bioinformatic analysis identified differentially expressed ADORA2A in OPLL and its regulatory miRNAs miR-497 and miR-195. Hence, this study was conducted to clarify the functional relevance of miR-497-195 cluster in OPLL, which may implicate in Adenosine A2A (ADORA2A). PLL tissues were collected from OPLL and non-OPLL patients, followed by quantification of miR-497, miR-195 and ADORA2A expression. The expression of miR-497, miR-195 and/or ADORA2A was altered in posterior longitudinal ligament (PLL) cells, which then were stimulated with cyclic mechanical stress (CMS). We validated that ADORA2A was expressed highly, while miR-497 and miR-195 were down-regulated in PLL tissues of OPLL patients. miR-195 and miR-497 expression in CMS-treated PLL cells was restored by a demethylation reagent 5-aza-2'-deoxycytidine (AZA). Moreover, expression of miR-195 and miR-497 was decreased by promoting promoter CpG island methylation. ADORA2A was verified as the target of miR-195 and miR-497. Overexpression of miR-195 and miR-497 diminished expression of osteogenic factors in PLL cells by inactivating the cAMP/PKA signaling pathway via down-regulation of ADORA2A. Collectively, miR-497-195 cluster augments osteogenic differentiation of PLL cells by inhibiting ADORA2A-dependent cAMP/PKA signaling pathway.


Assuntos
Diferenciação Celular , Metilação de DNA , Regulação da Expressão Gênica , MicroRNAs/genética , Ossificação do Ligamento Longitudinal Posterior/patologia , Osteogênese , Receptor A2A de Adenosina/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ossificação do Ligamento Longitudinal Posterior/genética , Ossificação do Ligamento Longitudinal Posterior/metabolismo , Receptor A2A de Adenosina/genética , Transdução de Sinais
5.
Opt Lett ; 45(23): 6466-6469, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258838

RESUMO

We study both theoretically and experimentally the effect of nonlinearity on topologically protected linear interface modes in a photonic Su-Schrieffer-Heeger (SSH) lattice. It is shown that under either focusing or defocusing nonlinearity, this linear topological mode of the SSH lattice turns into a family of topological gap solitons. These solitons are stable. However, they exhibit only a low amplitude and power and are thus weakly nonlinear, even when the bandgap of the SSH lattice is wide. As a consequence, if the initial beam has modest or high power, it will either delocalize, or evolve into a soliton not belonging to the family of topological gap solitons. These theoretical predictions are observed in our experiments with optically induced SSH-type photorefractive lattices.

6.
Phys Rev Lett ; 124(18): 183901, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441985

RESUMO

Topological properties of lattices are typically revealed in momentum space using concepts such as the Chern number. Here, we study unconventional loop states, namely, the noncontractible loop states (NLSs) and robust boundary modes, mediated by nontrivial topology in real space. While such states play a key role in understanding fundamental physics of flatband systems, their experimental observation has been hampered because of the challenge in realizing desired boundary conditions. Using a laser-writing technique, we optically establish photonic kagome lattices with both an open boundary by properly truncating the lattice, and a periodic boundary by shaping the lattice into a Corbino geometry. We thereby demonstrate the robust boundary modes winding around the entire edge of the open lattice and, more directly, the NLSs winding in a closed loop akin to that in a torus. We prove that the NLSs due to real-space topology persist in ideal Corbino-shaped kagome lattices of arbitrary size. Our results could be of great importance for our understanding of the singular flatbands and the intriguing physics phenomenon applicable for strongly interacting systems.

7.
Phys Rev Lett ; 121(26): 263902, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636121

RESUMO

Flatband systems typically host "compact localized states" (CLS) due to destructive interference and macroscopic degeneracy of Bloch wave functions associated with a dispersionless energy band. Using a photonic Lieb lattice (LL), such conventional localized flatband states are found to be inherently incomplete, with the missing modes manifested as extended line states that form noncontractible loops winding around the entire lattice. Experimentally, we develop a continuous-wave laser writing technique to establish a finite-sized photonic LL with specially tailored boundaries and, thereby, directly observe the unusually extended flatband line states. Such unconventional line states cannot be expressed as a linear combination of the previously observed boundary-independent bulk CLS but rather arise from the nontrivial real-space topology. The robustness of the line states to imperfect excitation conditions is discussed, and their potential applications are illustrated.

8.
Mol Cell Biochem ; 420(1-2): 1-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27473145

RESUMO

In vitro evidence of hypoxia-induced resistance to cisplatin (CDDP)-mediated apoptosis exists in human osteosarcoma (OS). Gambogic acid (GA) is a promising chemotherapeutic compound that could increase the chemotherapeutic effectiveness of CDDP in human OS cells by inducing cell cycle arrest and promoting apoptosis. This study examined whether GA could overcome OS cell resistance to CDDP. Hypoxia significantly reduced levels of CDDP-induced apoptosis in the OS cell lines MG63 and HOS. However, combined treatment with GA and CDDP revealed a strong synergistic action between these drugs, and higher protein levels of the apoptosis-related factor Fas, cleaved caspase-8 and cleaved caspase-3 and lower expression of hypoxia-inducible factor (HIF)-1α are detected in both cell lines. Meanwhile, drug resistance was not reversed by exposure to the HIF-1α inhibitor 2-methoxyestradiol. These findings strongly suggest that hypoxia-induced resistance to CDDP is reversed by GA in OS cells independently of HIF-1α. Furthermore, in vivo studies using xenograft mouse models revealed that combination therapy with CDDP and GA exerted increased antitumor effects by inducing apoptosis. Taken together, our results demonstrate that GA may be a new potent therapeutic agent useful for targeting human OS cells.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Osteossarcoma , Xantonas/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Nanosci Nanotechnol ; 16(3): 2291-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27455631

RESUMO

A competitive lateral flow assay for the rapid detection of Salmonella choleraesuis was developed. Immuno-magnetic nanobeads were produced by covalently coupling anti-Salmonella choleraesuis antibody to magnetic nanobeads. These immuno-magnetic nanobeads were used as visually detected probes in the subsequent assay. Compared with the traditional sandwich assay, which is used for detecting macro-molecules, this new method was developed based on the competitive relationship between S. choleraesuis in the inspected sample and the outer membrane protein immobilized on the T line. Thus, only one antibody was necessary in the new assay, whereas a pair of rigorously selected antibodies were required in the sandwich assay. The sensitivity of the competitive assay for S. choleraesuis was 1.2 x 10(7) cfu/mL. In addition, no cross reactions were found in the 17 common non-Salmonella bacteria strains and in the 4 Salmonella strains of other serotypes. Thus, with satisfactory sensitivity and specificity, the assay can be applied for the rapid detection of pre-enriched culture that may contain S. choleraesuis.


Assuntos
Separação Imunomagnética , Sondas Moleculares , Nanotecnologia , Salmonella/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/metabolismo , Salmonella/imunologia , Salmonella/metabolismo
10.
J Food Sci Technol ; 52(3): 1453-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25745213

RESUMO

The aim of this study was to characterize the properties of ovalbumin (OVA) after glycated with glucose under microwave heating. For this purpose, microwave at 480 and 640 W power levels were used for heating the OVA-glucose system in solid-state for 0, 5, 10, 15, 20 and 25 min, respectively. The results indicated that the protein molecular weight was increased after glycated with glucose under microwave treatment, the pH of the system was decreased with the increase of microwave treatment power and time, while the UV absorbance, browning intensity, antioxidant activities as well as the emulsifying activity and emulsion stability of the Maillard reaction products (MRPs) were increased in according with the raise of microwave treatment power and time. The reaction time of microwave treatment is much shorter than those using traditional methods, suggesting that microwave irradiation is a novel and efficient approach to promote Maillard reaction (MR) in dry state and improve protein antioxidant and functional properties.

11.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499999

RESUMO

A piston wear fault is a major failure mode of axial piston pumps, which may decrease their volumetric efficiency and service life. Although fault detection based on machine learning theory can achieve high accuracy, the performance mainly depends on the detection model and feature selection. Feature selection in learning has recently emerged as a crucial issue. Therefore, piston wear detection and feature selection are essential and urgent. In this paper, we propose a vibration signal-based methodology using the improved spare support vector machine, which can integrate the feature selection into the piston wear detection learning process. Forty features are defined to capture the piston wear signature in the time domain, frequency domain, and time-frequency domain. The relevance and impact of sparsity in 40 features are illustrated through the single and multiple statistical feature analysis. Model performance is assessed and the sparse features are discovered. The maximum model testing and training accuracy are 97.50% and 96.60%, respectively. Spare features s10, s12, Ew(8), x7, Ee(5), and Ee(4) are selected and validated. Results show that the proposed methodology is applicable for piston wear detection and feature selection, with high model accuracy and good feature sparsity.

12.
Microorganisms ; 10(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144446

RESUMO

Sarcandra glabra in-forest planting, an anthropogenic activity that may introduce a variety of disturbances into the forest, is being popularly promoted in southern China, while its consequential influences on soil nutrients, as well as the arbuscular mycorrhiza fungal (AMF) community of key forest keystone plants, are still unelucidated, which hampers the assessment of ecological safety and the improvement of agronomic measurements. In this research, topsoil from a 3-year-old Sarcandra glabra planted forest and a nearby control forest were sampled, and the annual variation in the soil nutrients and AMF community of the keystone tree Cunninghamia lanceolata were investigated. Our result showed that the total amount of soil organic carbon of the Sarcandra glabra cultivation group was significantly higher than that of the control group (p < 0.05), which indicated that Sarcandra glabra cultivation significantly enhanced the topsoil carbon storage. Yet, there were only insignificant differences in the Shannon index and Chao index of the AMF community between the two groups (p > 0.05). PCoA analysis found that the compositional differences between two groups were also insignificant. This indicated that Sarcandra glabra cultivation had no significant influence on the diversity and composition of the Cunninghamia lanceolata AMF community. However, we found that the differences in the total amounts of nitrogen and total phosphorus between the two groups were relatively lower in April and September, which indicated the higher nutrient demands and consumption of Sarcandra glabra in these two periods and suggested that a sufficient fertilizer application in these two stages would reduce the potential competition for nutrients between Sarcandra glabra and Cunninghamia lanceolata in order to ensure Sarcandra glabra production and forest health. Lastly, our results reported a total extra income ranging from of CNY 127,700 hm−2 (7 years of cultivation) to CNY 215,300 hm−2 (10 years cultivation) provided by Sarcandra glabra in-forest planting, which indicated its powerful potential for mitigating poverty. Our research systematically investigated the annual variation in the soil nutrient content and keystone tree AMF community caused by Sarcandra glabra cultivation and offers constructive guidance for Sarcandra glabra cultivation and fertilization management and ecological safety assessment.

13.
Curr Top Med Chem ; 22(17): 1406-1425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35473548

RESUMO

Breast cancer is one of the most prevalent malignant diseases, and one of the main causes of mortality among women across the world. Despite advances in chemotherapy, drug resistance remains a major clinical concern, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation and induce cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers, including breast cancer. This review summarizes the latest progress related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for the further rational design of more effective candidates.


Assuntos
Antineoplásicos , Neoplasias da Mama , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis
14.
Light Sci Appl ; 11(1): 152, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606368

RESUMO

Compact terahertz (THz) functional devices are greatly sought after for high-speed wireless communication, biochemical sensing, and non-destructive inspection. However, controlled THz generation, along with transport and detection, has remained a challenge especially for chip-scale devices due to low-coupling efficiency and unavoidable absorption losses. Here, based on the topological protection of electromagnetic waves, we demonstrate nonlinear generation and topologically tuned confinement of THz waves in an engineered lithium niobate chip forming a wedge-shaped Su-Schrieffer-Heeger lattice. Experimentally measured band structures provide direct visualization of the THz localization in the momentum space, while robustness of the confined mode against chiral perturbations is also analyzed and compared for both topologically trivial and nontrivial regimes. Such topological control of THz waves may bring about new possibilities in the realization of THz integrated circuits, promising for advanced photonic applications.

15.
Light Sci Appl ; 10(1): 164, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376638

RESUMO

Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum (BICs) was recently unveiled. When nonlinearity is added to the HOTI system, a number of fundamentally important questions arise. For example, how does nonlinearity couple higher-order topological BICs with the rest of the system, including continuum states? In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here we unveil the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We observe topological corner states that are also BICs in a laser-written second-order topological lattice and further demonstrate their nonlinear coupling with edge (but not bulk) modes under the proper action of both self-focusing and defocusing nonlinearities. Theoretically, we calculate the eigenvalue spectrum and analog of the Zak phase in the nonlinear regime, illustrating that a topological BIC can be actively tuned by nonlinearity in such a photonic HOTI. Our studies are applicable to other nonlinear HOTI systems, with promising applications in emerging topology-driven devices.

16.
Science ; 372(6537): 72-76, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795453

RESUMO

Topology, parity-time (PT) symmetry, and nonlinearity are at the origin of many fundamental phenomena in complex systems across the natural sciences, but their mutual interplay remains unexplored. We established a nonlinear non-Hermitian topological platform for active tuning of PT symmetry and topological states. We found that the loss in a topological defect potential in a non-Hermitian photonic lattice can be tuned solely by nonlinearity, enabling the transition between PT-symmetric and non-PT-symmetric regimes and the maneuvering of topological zero modes. The interaction between two apparently antagonistic effects is revealed: the sensitivity close to exceptional points and the robustness of non-Hermitian topological states. Our scheme using single-channel control of global PT symmetry and topology via local nonlinearity may provide opportunities for unconventional light manipulation and device applications.

17.
Nat Commun ; 11(1): 1586, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221307

RESUMO

Topological properties of materials are typically presented in momentum space. Here, we demonstrate a universal mapping of topological singularities from momentum to real space. By exciting Dirac-like cones in photonic honeycomb (pseudospin-1/2) and Lieb (pseudospin-1) lattices with vortex beams of topological charge l, optimally aligned with a given pseudospin state s, we directly observe topological charge conversion that follows the rule l → l + 2s. Although the mapping is observed in photonic lattices where pseudospin-orbit interaction takes place, we generalize the theory to show it is the nontrivial Berry phase winding that accounts for the conversion which persists even in systems where angular momentum is not conserved, unveiling its topological origin. Our results have direct impact on other branches of physics and material sciences beyond the 2D photonic platform: equivalent mapping occurs for 3D topological singularities such as Dirac-Weyl synthetic monopoles, achievable in mechanical, acoustic, or ultracold atomic systems, and even with electron beams.

18.
Light Sci Appl ; 9: 147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32864122

RESUMO

The flourishing of topological photonics in the last decade was achieved mainly due to developments in linear topological photonic structures. However, when nonlinearity is introduced, many intriguing questions arise. For example, are there universal fingerprints of the underlying topology when modes are coupled by nonlinearity, and what can happen to topological invariants during nonlinear propagation? To explore these questions, we experimentally demonstrate nonlinearity-induced coupling of light into topologically protected edge states using a photonic platform and develop a general theoretical framework for interpreting the mode-coupling dynamics in nonlinear topological systems. Performed on laser-written photonic Su-Schrieffer-Heeger lattices, our experiments show the nonlinear coupling of light into a nontrivial edge or interface defect channel that is otherwise not permissible due to topological protection. Our theory explains all the observations well. Furthermore, we introduce the concepts of inherited and emergent nonlinear topological phenomena as well as a protocol capable of revealing the interplay of nonlinearity and topology. These concepts are applicable to other nonlinear topological systems, both in higher dimensions and beyond our photonic platform.

19.
Food Chem ; 276: 333-341, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30409603

RESUMO

Fluorescent lateral flow immunoassay (FLFIA) based on immunomagnetic separation (IMS) has the advantage of sensitivity. However, its complex operation includes IMS, elution, incubation, and FLFIA steps. Here, we prepared a core@shell@satellite structure fluorescent magnetic nanobeads (FMNBs) and firstly introduced them into the novel method that integrated IMS with FLFIA (I-IMS-FLFIA) for the detection of Escherichia coli O157:H7. The FMNBs exhibited excellent magnetic and fluorescent properties for applications in IMS and FLFIA. However, the inner filter effect (IFE) of FMNBs may disturb the detection of I-IMS-FLFIA. Systematical studies showed that the amount of immuno-FMNBs and the concentration of monoclonal antibody can be controlled to obtain maximum photoluminescence intensity and effectively weaken or solve IFE. Under optimum conditions, this method allows for the quantified detection of 2.39 × 102 CFU/mL and qualified detection of 2.50 × 103 CFU/mL. The method is simple, safe, efficient, and sensitive for the detection of foodborne pathogens.


Assuntos
Escherichia coli O157/isolamento & purificação , Imunoensaio/métodos , Separação Imunomagnética/métodos , Microbiologia de Alimentos/métodos
20.
J Orthop Surg Res ; 12(1): 32, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222750

RESUMO

BACKGROUND: This study aimed to investigate the effects of silk fiber (SF)/calcium phosphate cement (CPC) biocomposite on repairing radial bone defects in rabbits. METHODS: Four-month-old New Zealand rabbits were selected to create a bilateral radial bone defect model and divided into four groups according to implanted material: SF/CPC, SF/CPC/particulate bone (PB), PB, and control (C). The specimens were removed at four and eight postoperative weeks for general observation, X-ray examination, tissue slicing, scanning electron microscopy (SEM), and biomechanical testing. RESULTS: Postoperative X-ray showed no bone defect repair in group C and different degrees of bone defect repair in the other three groups. Imaging, histology, and SEM showed the following: group SF/CPC formed fine trabecular bone in week 4, while the maximum bending load in group SF/CPC in week 4 was significantly different from those in the other groups (P < 0.05). CONCLUSIONS: SF/CPC has good biocompatibility and bone-inducing ability, demonstrating its bone defect-repairing ability.


Assuntos
Cimentos Ósseos/química , Substitutos Ósseos/química , Fosfatos de Cálcio , Rádio (Anatomia)/cirurgia , Seda , Animais , Fenômenos Biomecânicos , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Coelhos , Radiografia , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/ultraestrutura , Engenharia Tecidual/métodos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA