Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(17): e0111322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993735

RESUMO

Bovine viral diarrhea virus (BVDV) is the causative agent of the bovine viral diarrhea-mucosal disease, which is a leading cause of economic losses in the cattle industry worldwide. To date, many underlying mechanisms involved in BVDV-host interactions remain unclear, especially the functions of long noncoding RNAs (lncRNAs). In our previous study, the lncRNA expression profiles of BVDV-infected Madin-Darby bovine kidney (MDBK) cells were obtained by RNA-seq, and a significantly downregulated lncRNA IALNCR targeting MAPK8/JNK1 (a key regulatory factor of apoptosis) was identified through the lncRNA-mRNA coexpression network analysis. In this study, the function of IALNCR in regulating apoptosis to affect BVDV replication was further explored. Our results showed that BVDV infection-induced downregulation of the lncRNA IALNCR in the host cells could suppress the expression of MAPK8/JNK1 at both the mRNA and protein levels, thereby indirectly promoting the activation of caspase-3, leading to cell-autonomous apoptosis to antagonize BVDV replication. This was further confirmed by the small interfering RNA (siRNA)-mediated knockdown of the lncRNA IALNCR. However, the overexpression of the lncRNA IALNCR inhibited apoptosis and promoted BVDV replication. In conclusion, our findings demonstrated that the lncRNA IALNCR plays an important role in regulating host antiviral innate immunity against BVDV infection. IMPORTANCE Bovine viral diarrhea-mucosal disease caused by BVDV is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BVDV-host interactions are complex. To date, most studies focused only on how BVDV escapes host innate immunity. By contrast, how the host cell regulates anti-BVDV innate immune responses is rarely reported. In this study, a significantly downregulated lncRNA, with a potential function of inhibiting apoptosis (inhibiting apoptosis long noncoding RNA, IALNCR), was obtained from the lncRNA expression profiles of BVDV-infected cells and was experimentally evaluated for its function in regulating apoptosis and affecting BVDV replication. We demonstrated that downregulation of BVDV infection-induced lncRNA IALNCR displayed antiviral function by positively regulating the MAPK8/JNK1 pathway to promote cell apoptosis. Our data provided evidence that host lncRNAs regulate the innate immune response to BVDV infection.


Assuntos
Apoptose , Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina , Regulação para Baixo , Proteína Quinase 8 Ativada por Mitógeno , RNA Longo não Codificante , Replicação Viral , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina/crescimento & desenvolvimento , Vírus da Diarreia Viral Bovina/imunologia , Imunidade Inata , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética
2.
J Virol ; 96(24): e0149222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36468862

RESUMO

Bovine viral diarrhea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases of cattle, leading to numerous losses to the cattle rearing industry worldwide. The pathogenicity of BVDV is extremely complex, and many underlying mechanisms involved in BVDV-host interactions are poorly understood, especially how BVDV utilizes host metabolism pathway for efficient viral replication and spread. In our previous study, using an integrative analysis of transcriptomics and proteomics, we found that DHCR24 (3ß-hydroxysteroid-Δ24 reductase), a key enzyme in regulating cholesterol synthesis, was significantly upregulated at both gene and protein levels in the BVDV-infected bovine cells, indicating that cholesterol is important for BVDV replication. In the present study, the effects of DHCR24-mediated cholesterol synthesis on BVDV replication was explored. Our results showed that overexpression of the DHCR24 effectively promoted cholesterol synthesis, as well as BVDV replication, while acute cholesterol depletion in the bovine cells by treating cells with methyl-ß-cyclodextrin (MßCD) obviously inhibited BVDV replication. In addition, knockdown of DHCR24 (gene silencing with siRNA targeting DHCR24, siDHCR24) or chemical inhibition (treating bovine cells with U18666A, an inhibitor of DHCR24 activity and cholesterol synthesis) significantly suppressed BVDV replication, whereas supplementation with exogenous cholesterol to the siDHCR24-transfected or U18666A-treated bovine cells remarkably restored viral replication. We further confirmed that BVDV nonstructural protein NS5A contributed to the augmentation of DHCR24 expression. Conclusively, augmentation of the DHCR24 induced by BVDV infection plays an important role in BVDV replication via promoting cholesterol production. IMPORTANCE Bovine viral diarrhea virus (BVDV), an important pathogen of cattle, is the causative agent of bovine viral diarrhea-mucosal disease, which causes extensive economic losses in both cow- and beef-rearing industry worldwide. The molecular interactions between BVDV and its host are extremely complex. In our previous study, we found that an essential host factor 3ß-hydroxysteroid-δ24 reductase (DHCR24), a key enzyme involved in cholesterol synthesis, was significantly upregulated at both gene and protein levels in BVDV-infected bovine cells. Here, we experimentally explored the function of the DHCR24-mediated cholesterol synthesis in regulating BVDV replication. We elucidated that the augmentation of the DHCR24 induced by BVDV infection played a significant role in viral replication via promoting cholesterol synthesis. Our data provide evidence that BVDV utilizes a host metabolism pathway to facilitate its replication and spread.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Colesterol , Vírus da Diarreia Viral Bovina , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Replicação Viral , Animais , Bovinos , Colesterol/biossíntese , Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Células Cultivadas
3.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827944

RESUMO

Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.


Assuntos
Carpas , Doenças dos Peixes/prevenção & controle , Infecções por Herpesviridae/veterinária , Herpesviridae/imunologia , Vacinas contra Herpesvirus/administração & dosagem , Probióticos , Proteínas Virais/imunologia , Administração Oral , Alginatos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Cápsulas , Proliferação de Células , Quitosana , Infecções por Herpesviridae/prevenção & controle , Vacinas contra Herpesvirus/imunologia , Imunogenicidade da Vacina , Imunoglobulina M/sangue , Lacticaseibacillus rhamnosus , Linfócitos/fisiologia , Vacinação em Massa/veterinária , Proteínas Recombinantes de Fusão , Baço/imunologia , Baço/metabolismo , Vacinas Sintéticas/administração & dosagem , Proteínas Virais/genética
4.
Cytokine ; 144: 155581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029942

RESUMO

Lactobacilli are abundant in the intestinal tract where they constantly regulate immune system via interacting with a great diversity of immune cells, such as dendritic cells (DCs). Notably, DCs are powerful antigen-presenting cells and they are capable of initiating primary immune responses. In this study, we studied the effects of Lactobacillus johnsonii (L. johnsonii) and Lactobacillus johnsonii cell-free supernatant (L. johnsonii-CFS) on the activation of porcine monocyte-derived dendritic cells (MoDCs) and their regulation of Th cellular immune responses in vitro. The MoDCs generated from porcine peripheral blood monocytes were stimulated by L. johnsonii and L. johnsonii-CFS, respectively. Pre-incubation with L. johnsonii increased expression of CD172a, CD80, major histocompatibility complex class II (MHCII) in MoDCs, and enhanced the ability of MoDCs to induce the proliferation of CD4+ T cell, while pre-incubation with L. johnsonii-CFS merely upregulated the expression of MHCII. Analysis of the cytokines showed that L. johnsonii stimulated up-regulation of Th1-type cytokines (IL-12p40, IFN-γ, TNF-α), pro-inflammatory cytokine IL-1ß, chemokine CCL20, and Treg-type / anti-inflammatory cytokines IL-10 in MoDCs. Notably, a high production of IL-10 was observed in the MoDCs treated with L. johnsonii-CFS, indicating L. johnsonii-CFS exerted anti-inflammatory effects. Furthermore, L. johnsonii induced up-regulation of TLR2 and TLR6, but L. johnsonii-CFS not. Moreover, MoDCs stimulated by L. johnsonii mainly promoted T cell differentiate into Th1/Th2/Treg cells and plays an important role in improving the balance between Th1/Th2/Treg-type cells, whereas MoDCs stimulated by L. johnsonii-CFS mainly directed T cell to Th2/Treg subset polarization. In conclusion, L. johnsonii and L. johnsonii-CFS exhibited the ability of modulating innate immunity by regulating immunological functions of MoDCs in vitro, suggesting their potential ability to use as microecological preparations and medicines.


Assuntos
Células Dendríticas/imunologia , Imunidade Celular/imunologia , Lactobacillus johnsonii/imunologia , Monócitos/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Leucócitos Mononucleares/imunologia , Suínos , Linfócitos T Reguladores/imunologia
5.
Arch Virol ; 166(3): 831-840, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33486631

RESUMO

Ovine pulmonary adenomatosis (OPA) is caused by jaagsiekte sheep retrovirus (JSRV) and is a chronic, progressive, and infectious neoplastic lung disease in sheep, which causes significant economic losses to the sheep industry. Neither a vaccine nor serological diagnostic methods to detect OPA are available. We performed a JSRV infection survey in sheep using blood samples (n = 1,372) collected in the three northeastern provinces of China (i.e., Inner Mongolia, Heilongjiang, and Jilin) to determine JSRV infection status in sheep herds using a real-time PCR assay targeting the gag gene of JSRV. The ovine endogenous retrovirus sequence was successfully amplified in all sheep samples tested (296 from the Inner Mongolia Autonomous Region, 255 from Jilin province, and 821 from Heilongjiang province). Subsequently, we attempted to distinguish exogenous JSRV (exJSRV) and endogenous JSRV (enJSRV) infections in these JSRV-positive samples using a combination assay that identifies a ScaI restriction site in an amplified 229-bp fragment of the gag gene of JSRV and a "LHMKYXXM" motif in the cytoplasmic tail region of the JSRV envelope protein. The ScaI restriction site is present in all known oncogenic JSRVs but absent in ovine endogenous retroviruses, while the "LHMKYXXM" motif is in all known exJSRVs but not in enJSRVs. Interestingly, one JSRV strain (HH13) from Heilongjiang province contained the "LHMKYXXM" motif but not the ScaI enzyme site. Phylogenetic analysis showed that strain HH13 was closely related to strain enJSRV-21 reported in the USA, indicating that HH13 could be an exogenous virus. Our results provide valuable information for further research on the genetic evolution and pathogenesis of JSRV.


Assuntos
Retrovirus Endógenos/genética , Produtos do Gene env/genética , Retrovirus Jaagsiekte de Ovinos/genética , Adenomatose Pulmonar Ovina/epidemiologia , Adenomatose Pulmonar Ovina/patologia , Motivos de Aminoácidos/genética , Animais , Sequência de Bases , China/epidemiologia , DNA Viral/análise , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Evolução Molecular , Genoma Viral/genética , Retrovirus Jaagsiekte de Ovinos/classificação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Ovinos
6.
BMC Genomics ; 21(1): 724, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076825

RESUMO

BACKGROUND: Infectious bursal disease virus (IBDV) causes acute, highly contagious, immunosuppressive, and lethal infectious disease in young chickens and mainly infects the bursa of Fabricius (BF). To investigate interactions between IBDV and its host, RNA sequencing was applied to analyze the responses of the differentially expressed transcriptional profiles of BF infected by very virulent IBDV (vvIBDV). RESULTS: In total, 317 upregulated and 94 downregulated mRNAs were found to be significantly differentially expressed in infected chickens, compared to controls. Long non-coding RNA (lncRNA) and circular RNA (circRNA) alterations were identified in IBDV-infected chickens, and significantly different expression was observed in 272 lncRNAs and 143 circRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to assess the functions of significantly dysregulated genes, which showed that the JAK-STAT signaling pathway, the NOD-like receptor signaling pathway, and apoptosis may be activated by IBDV infection. We predicted interactions between differentially expressed genes and produced lncRNA-mRNA and circRNA-miRNA-mRNA regulator network. CONCLUSIONS: The present study identified the expression profiles of mRNAs, lncRNAs, and circRNAs during vvIBDV infection and provides new insights into the pathogenesis of IBDV and antiviral immunity of the host.


Assuntos
Infecções por Birnaviridae , Bolsa de Fabricius , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Infecções por Birnaviridae/genética , Infecções por Birnaviridae/veterinária , Bolsa de Fabricius/metabolismo , Bolsa de Fabricius/virologia , Galinhas/genética , Vírus da Doença Infecciosa da Bursa/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , RNA Circular , RNA Longo não Codificante/genética , RNA Mensageiro/genética
7.
Cytokine ; 136: 155269, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919254

RESUMO

Lactobacillus species are typical members of gut microflora that immunomodulatory effects and can regulate a variety of immune cells, such as dendritic cells (DCs). Notably, DCs possess the unique ability to initiate primary immune responses. Notably, DCs possess the unique ability to initiate primary immune responses. In this study, we investigated the effects of Lactobacillus johnsonii (L. johnsonii) on the maturation and activation of chicken bone marrow-derived dendritic cells (chBM-DCs). The chBM-DCs generated from chicken bone marrow monocytes were stimulated using lethally irradiated L. johnsonii. L. johnsonii-stimulated chBM-DCs upregulated the expression of major histocompatibility complex class II (MHC-II), CD40, and CD86, decreased phagocytosis, and increased the ability to induce the proliferation of allogeneic T cells, which displayed a mature phenotype and function. Upon maturation with L. johnsonii, the expression of Th1-type cytokines [interleukin (IL)-12, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α)], a Th2-type cytokine (IL-10), pro-inflammatory cytokines (IL-1ß and IL-6), and chemokines (CXCLi1 and CXCLi2) greatly increased; however, a high expression of IL-10 was only observed at mid-late time points for chBM-DCs stimulated with high doses of L. johnsonii. Moreover, L. johnsonii upregulated the mRNA levels of TLR2 and TLR5. These results reveal that L. johnsonii plays a potentially important role in modulating the immunological functions of chBM-DCs, suggesting that it influences and mediates immune responses in vitro.


Assuntos
Proteínas Aviárias/imunologia , Células da Medula Óssea/imunologia , Quimiocinas/imunologia , Galinhas/imunologia , Células Dendríticas/imunologia , Regulação da Expressão Gênica/imunologia , Lactobacillus johnsonii/imunologia , Animais , Receptor 2 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia
8.
Microb Cell Fact ; 19(1): 186, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004035

RESUMO

BACKGROUND: Bovine viral diarrhea virus (BVDV) is one of the main causes of infectious diseases in cattle and causes large financial losses to the cattle industry worldwide. In this study, Lactobacillus casei strain W56 (Lc W56) was used as antigen deliver carrier to construct a recombinant Lactobacillus vaccine pPG-E2-ctxB/Lc W56 constitutively expressing BVDV E2 protein fused with cholera toxin B subunit (ctxB) as an adjuvant, and its immunogenicity against BVDV infection in mice model by oral route was explored. RESULTS: Our results suggested that pPG-E2-ctxB/Lc W56 can effectively activate dendritic cells (DCs) in the Peyer's patches, up-regulate the expression of Bcl-6, and promote T-follicular helper (Tfh) cells differentiation, as well as enhance B lymphocyte proliferation and promote them differentiate into specific IgA-secreting plasma cells, secreting anti-E2 mucosal sIgA antibody with BVDV-neutralizing activity. Moreover, significant levels (p < 0.01) of BVDV-neutralizing antigen-specific serum antibodies were induced in the pPG-E2-ctxB/LC W56 group post-vaccination. The recombinant Lactobacillus vaccine can induce cellular immune responses, and significant levels (p < 0.01) of Th1-associated cytokines (IL-2, IL-12, and IFN-γ), Th2-associated cytokines (IL-4, IL-10) and Th17-associated cytokine (IL-17) were determined in the serum of vaccinated mice. Significantly, the recombinant Lactobacillus vaccine provides immune protection against BVDV infection, which can be cleared effectively by the vaccine post-challenge in orally vaccinated animals. CONCLUSIONS: The genetically engineered Lactobacillus vaccine constructed in this study is immunogenic in mice and can induce mucosal, humoral, and cellular immune responses, providing effective anti-BVDV immune protection. It thus represents a promising strategy for vaccine development against BVDV.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Toxina da Cólera/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Lacticaseibacillus casei/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/patologia , Bovinos , Citocinas/imunologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Imunidade Celular , Lacticaseibacillus casei/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/imunologia , Organismos Livres de Patógenos Específicos , Vacinas Sintéticas/imunologia , Carga Viral
9.
Mol Cell Probes ; 49: 101495, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846702

RESUMO

Feline infectious peritonitis (FIP) is caused by the FIP virus (FIPV), a highly virulent mutant form of feline coronavirus (FCoV). This disease is one of the most important infectious diseases in cats, and it is associated with high mortality, particularly among younger cats. In this study, we isolated a wild-type FIPV HRB-17 epidemic strain from the blood sample of household pet cat exhibiting the characteristic wet-form FIP symptoms, which has been confirmed further by animal infection. Further, we developed an EvaGreen-based real-time RT-PCR assay for the accurate detection of FCoV based on the amplification of the highly conserved FIPV N gene. Then, using a combination of the real-time RT-PCR approach and a serum chemistry assay, we performed an epidemiological survey of FIPV infection in cats living in Harbin City, Northeast China. The results indicated that the EvaGreen-based real-time RT-PCR assay can be used for screening FCoV infection in the affected cats at an analytical detection limit of 8.2 × 101 viral genome copies/µL, but could not effectively distinguish FIPVs from FECVs. Additionally, the results of the epidemiological survey investigating feline blood samples (n = 1523) collected between July 2017 to July 2019 revealed an FIPV prevalence of approximately 12% (189/1523). Maybe, the prevalence would be less than 12% due to the real-time RT-PCR assay could not accurately differentiate FIPV and FECV. Nevertheless, it still highlighted the severity of the FIP epidemic in cats and reiterated the urgent need to develop effective anti-FIP therapeutic agents and anti-FIPV vaccines. As pet cats are household animals, risk communication and continuous region-extended surveillance cat programs are recommended.


Assuntos
Coronavirus Felino , Peritonite Infecciosa Felina/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Animais Selvagens , Análise Química do Sangue/veterinária , Gatos , China/epidemiologia , Coronavirus Felino/classificação , Coronavirus Felino/genética , Peritonite Infecciosa Felina/sangue , Proteínas do Nucleocapsídeo/genética , Animais de Estimação/virologia , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
10.
Fish Shellfish Immunol ; 105: 327-329, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721570

RESUMO

Spring viremia of carp (SVC) is highly contagious and lethal disease in cyprinid fish, in particular common carps (Cyprinus carpio), causing numerous economic losses to the aquaculture industry. SVC is presently endemic disease in Europe, America, and several countries in Asia and its causative agent is spring viremia of carp virus (SVCV). In this study, a chitosan-alginate microcapsule probiotic vaccine expressing G protein of SVCV was prepared, and the immunogenicity in carps of orally administrated with the microcapsule probiotic vaccine was evaluated. Our results showed that the microcapsule probiotic vaccine can induce potent antigen-specific immune responses in carps via oral vaccination, and provide effective anti-SVCV protection for carps. Significantly, the microcapsule probiotic vaccine is suitable for mass fish immunization, suggesting a promising vaccine strategy for fish.


Assuntos
Alginatos/administração & dosagem , Carpas/imunologia , Quitosana/administração & dosagem , Imunização/veterinária , Probióticos/administração & dosagem , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/imunologia , Administração Oral , Animais , Cápsulas , Doenças dos Peixes/prevenção & controle , Rhabdoviridae/genética , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/virologia , Proteínas Virais/química , Vacinas Virais/administração & dosagem
11.
Virol J ; 16(1): 97, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382996

RESUMO

BACKGROUND: Transmissible gastroenteritis virus (TGEV), a member of the family Coronaviridae, causes lethal watery diarrhea in piglets. Previous studies have revealed that the coronaviruses develop various strategies to evade the host innate immunity through the inhibition of nuclear factor kappa B (NF-κB) signaling pathway. However, the ability of TGEV to inhibit the host innate immune response by modulating the NF-κB signaling pathway is not clear. METHODS: In this study, a dual luciferase reporter assay was used to confirm the inhibition of NF-κB by TGEV infection and to identify the major viral proteins involved in the inhibition of NF-κB signaling. Real-time quantitative PCR was used to quantify the mRNA expression of inflammatory factors. The deubiquitination of Nsp3 domains and its effect on IκBα and p65 were analyzed by western blotting. The ubiquitination level of IκBα was analyzed by immunoprecipitation. RESULTS: In ST and IPEC-J2 cells, TGEV exhibited a dose-dependent inhibition of NF-κB activity. Individual TGEV protein screening revealed the high potential of non-structural protein 3 (Nsp3) to inhibit NF-κB signaling, and leading to the downregulation of the NF-κB-induced cytokine production. We demonstrated that the inhibitory effect of Nsp3 was mainly mediated through the suppression of IκBα degradation as well as the inhibition of p65 phosphorylation and nuclear translocation. Furthermore, the amino acid residues at positions 590-1,215 in Nsp3 were demonstrated to inhibit the degradation of IκBα by inhibiting the IκBα ubiquitination. CONCLUSION: TGEV infection can inhibit the activation of the NF-κB signaling pathway, which is mainly mediated by Nsp3 through the canonical pathway. The amino acid residues at positions 590-1,215 in Nsp3 compose the critical domain that mediates NF-κB inhibition. We speculate that this inhibitory effect is likely to be related to the structure of PLP2 with deubiquitinating enzyme activity of the amino acid residues at positions 590-1,215 in Nsp3. Our study provides a better understanding of the TGEV-mediated innate immune modulation and lays the basis for studies on the pathogenesis of coronavirus.


Assuntos
Gastroenterite Suína Transmissível/imunologia , Evasão da Resposta Imune , Imunidade Inata , NF-kappa B/antagonistas & inibidores , Transdução de Sinais , Vírus da Gastroenterite Transmissível/imunologia , Proteínas não Estruturais Virais/genética , Animais , Linhagem Celular , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos , NF-kappa B/genética , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Proteínas não Estruturais Virais/imunologia , Replicação Viral
12.
Mol Cell Probes ; 47: 101435, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415867

RESUMO

Currently in China, porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus (PoRV), and porcine deltacoronavirus (PDCoV) are the major causes of porcine viral diarrhea, and mixed infections in clinics are common, resulting in significant economic losses in pig industry. Here, a dual priming oligonucleotide (DPO)-based multiplex real-time SYBR Green RT-PCR assay were developed for accurately differentiating PEDV, TGEV, PoRV, and PDCoV in clinical specimens targeting the N gene of TGEV, PEDV, and PDCoV, and the VP7 gene of PoRV. Results showed that the DPO primer allowed a wider annealing temperature range (40-65 °C) and had a higher priming specificity compared to conventional primer, in which more than 3 nucleotides in the 3'- or 5'-segment of DPO primer mismatched with DNA template, PCR amplification efficiency would decrease substantially or extension would not proceed. DPO-based multiplex real-time RT-PCR method had analytical detection limit of 8.63 × 102 copies/µL, 1.92 × 102 copies/µL, 1.74 × 102 copies/µL, and 1.76 × 102 copies/µL for PEDV, TGEV, PoRV, and PDCoV in clinical specimens, respectively. A total of 672 clinical specimens of piglets with diarrheal symptoms were collected in Northeastern China from 2017 to 2018 followed by analysis using the assay, and epidemiological investigation results showed that PEDV, TGEV, PoRV, and PDCoV prevalence was 19.05%, 5.21%, 4.32%, and 3.87%, respectively. The assay developed in this study showed higher detection accuracy than conventional RT-PCR method, suggesting a useful tool for the accurate differentiation of the four major viruses causing porcine viral diarrhea in practice.


Assuntos
Coronaviridae/classificação , Primers do DNA/genética , Diarreia/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças dos Suínos/virologia , Animais , Coronaviridae/genética , Coronaviridae/isolamento & purificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Diarreia/virologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , RNA Viral/genética , Rotavirus/genética , Rotavirus/isolamento & purificação , Especificidade da Espécie , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação
13.
Fish Shellfish Immunol ; 89: 537-547, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30991145

RESUMO

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis in salmonid fish, resulting in substantial economic losses to the aquaculture industry worldwide. The G protein, which harbors the major antigenic determinants of IHNV, is an envelope glycoprotein that plays an important role in both pathogenicity and immunogenicity of IHNV. Previous studies have demonstrated that changes to viral glycosylation sites may affect replication and immunogenicity, but little is known about the specific contributions of G protein glycosylation to IHNV replication and pathogenicity. In this study, we predicted four N-linked glycosylation sites at position 56, 379, 401, and 438 Asp (N) in G protein, and using a reverse genetics system developed in our laboratory, constructed nine recombinant viruses with single, triple, or quadruple glycosylation site disruptions using alanine substitutions in the following combinations: rIHNV-N56A, rIHNV-N379A, rIHNV-N401A, rIHNV-N438A, rIHNV-N56A-N379A-N401A, rIHNV-N56A-N379A-N438A, rIHNV-N56A-N401A-N438A, rIHNV-N379A-N401A-N438A, and rIHNV-N56A-N379A-N401A-N438A. Our results confirmed that all four asparagines are sites of N-linked glycosylation, and Western blot confirmed that mutation of each predicted N-glycosylation sited impaired glycosylation. Among the nine recombinant IHNVs, replication levels decreased significantly in vitro and in vivo in the triple and quadruple mutants that combined mutation of asparagines 401 and 438, indicating the importance of glycosylation at these sites for efficient replication. Moreover, juvenile rainbow trout mortality after challenge by each of the nine mutants showed that, while eight mutants suffered almost 100% cumulative mortality over 30 days, the mutant with a single alanine substitution at position 438 resulted in cumulative mortality of less than 50% over 30 days. This mutant also elicited specific anti-IHNV IgM production earlier than other mutants, suggesting that glycosylation of asparagine 438 may be important for viral immune escape. In conclusion, our study reveals the effect of G protein glycosylation on the pathogenicity and immunogenicity of IHNV and provides a foundation for developing a live-attenuated vaccine.


Assuntos
Doenças dos Peixes/prevenção & controle , Glicoproteínas/imunologia , Vírus da Necrose Hematopoética Infecciosa/imunologia , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Oncorhynchus mykiss , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/imunologia , Animais , Doenças dos Peixes/imunologia , Glicosilação , Imunogenicidade da Vacina/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Virulência
14.
Appl Microbiol Biotechnol ; 103(15): 6169-6186, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165225

RESUMO

Ulcerative colitis (UC) is a chronic relapsing disease. Treatment of UC would benefit from specific targeting of therapeutics to the intestine. Previous studies have demonstrated that bovine lactoferricin and lactoferrampin have bactericidal, anti-inflammatory, and immunomodulatory effects. Here, we investigated whether oral administration of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactococcus lactis (LL-LFCA) strain could alleviate experimental colitis. LFCA derived from LL-LFCA inhibited the growth of Escherichia coli and Staphylococcus aureus in vitro. In mice, administration of LL-LFCA decreased the disease activity index and attenuated dextran sulfate sodium (DSS)-induced body weight loss and colon shortening. LL-LFCA treatment also ameliorated DSS-induced colon damage, inhibited inflammatory cell infiltration, significantly decreased myeloperoxidase activity, and ameliorated DSS-induced disruption of intestinal permeability and tight junctions. In addition, 16S rDNA sequencing showed that LL-LFCA reversed DSS-induced gut dysbiosis. The production of proinflammatory mediators in serum and the colon was also reduced by administration of LL-LFCA. In vitro, LFCA derived from LL-LFCA decreased the messenger RNA expression of proinflammatory factors. The underlying mechanisms may involve inhibition of the nuclear factor kappa B (NF-κB) pathway. The results demonstrate that LL-LFCA ameliorates DSS-induced intestinal injury in mice, suggesting that LL-LFCA might be an effective drug for the treatment of inflammatory bowel diseases.


Assuntos
Antibacterianos/metabolismo , Colite/patologia , Colite/terapia , Lactococcus lactis/metabolismo , Lactoferrina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Colite/induzido quimicamente , Modelos Animais de Doenças , Disbiose/terapia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Lactococcus lactis/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactoferrina/genética , Camundongos , Fragmentos de Peptídeos/genética , Proteínas Recombinantes/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resultado do Tratamento
15.
Food Microbiol ; 82: 119-126, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027765

RESUMO

Norovirus (NoV), a major food-borne virus, causes non-bacterial acute gastroenteritis in humans. Berries are generally harvested from low-growing bushes by hand and are minimally processed before being sold to consumers. Therefore, the consumption of berries has been linked to numerous food-borne gastroenteritis outbreaks caused by NoV in many countries. We performed a survey of NoV contamination in commercial fresh/frozen berry fruits collected from 2016 to 2017 in the Heilongjiang Province, the main berry-producing area in China, using a TaqMan-based real-time reverse transcription-PCR assay. Among 900 frozen and 900 fresh domestic retail berry samples, the prevalence of NoV was 9% (81/900) and 12.11% (109/900), including 35.80% (29/81) and 29.36% (32/109) of genotype GI alone, 54.32% (44/81) and 60.55% (66/109) of GII alone, and 9.88% (8/81) and 10.09% (11/109) of both GI and GII, respectively. No NoV was detected among the 677 frozen berry samples for export. Thus, the occurrence of NoV contamination was significantly higher in domestic berries than in exported berries and higher in fresh berries than in frozen berries. This study highlights the need for further risk surveillance for NoV contamination in berries produced in the Heilongjiang Province and recommends region-extended monitoring of retail berries for NoV.


Assuntos
Microbiologia de Alimentos , Frutas/virologia , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , China , Contaminação de Alimentos , Filogenia , RNA Viral/genética
16.
BMC Microbiol ; 18(1): 80, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-30055567

RESUMO

BACKGROUND: Bacterial ghosts (BGs) are empty bacterial cell envelopes generated by releasing the cellular contents. In this study, a phage infecting Lactobacillus casei ATCC 393 (L. casei 393) was isolated and designated Lcb. We aimed at using L. casei 393 as an antigen delivery system to express phage-derived holin for development of BGs. RESULTS: A gene fragment encoding holin of Lcb (hocb) was amplified by polymerase chain reaction (PCR). We used L. casei 393 as an antigen delivery system to construct the recombinant strain pPG-2-hocb/L. casei 393. Then the recombinants were induced to express hocb. The immunoreactive band corresponding to hocb was observed by western-blotting, demonstrating the efficiency and specificity of hocb expression in recombinants. The measurements of optical density at 600 nm (OD600) after induction showed that expression of hocb can be used to convert L. casei cells into BGs. TEM showed that the cytomembrane and cell walls of hocb expressing cells were partially disrupted, accompanied by the loss of cellular contents, whereas control cells did not show any morphological changes. SEM showed that lysis pores were distributed in the middle or at the poles of the cells. To examine where the plasmid DNA was associated, we analyzed the L. casei ghosts loading SYBR Green I labeled pCI-EGFP by confocal microscopy. The result demonstrated that the DNA interacted with the inside rather than with the outside surface of the BGs. To further analyze where the DNA were loaded, we stained BGs with MitoTracker Green FM and the loaded plasmids were detected using EGFP-specific Cy-3-labeled probes. Z-scan sections through the BGs revealed that pCI-EGFP (red) was located within the BGs (green), but not on the outside. Flow cytometry and qPCR showed that the DNA was loaded onto BGs effectively and stably. CONCLUSIONS: Our study constructed L. casei BGs by a novel method, which may be a promising technology for promoting the further application of DNA vaccine, providing experimental data to aid the development of other Gram-positive BGs.


Assuntos
Sistemas de Liberação de Medicamentos , Lacticaseibacillus casei/fisiologia , Vacinas de DNA/administração & dosagem , Proteínas Virais/metabolismo , Bacteriófagos/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , DNA/administração & dosagem , DNA/genética , DNA/metabolismo , Expressão Gênica , Vetores Genéticos , Lacticaseibacillus casei/ultraestrutura , Lacticaseibacillus casei/virologia , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , Proteínas Virais/genética
17.
Microb Cell Fact ; 17(1): 20, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426335

RESUMO

BACKGROUND: Porcine epidemic diarrhea caused by porcine epidemic diarrhea virus (PEDV) has led to serious economic losses to the swine industry worldwide. In this study, an oral recombinant Lactobacillus casei vaccine against PEDV infection targeting the intestinal microfold (M) cells and dendritic cells (DCs) for delivering the core neutralizing epitope (COE) of PEDV spike protein was developed with M cell-targeting peptide (Col) and dendritic cell-targeting peptide (DCpep). The immunogenicity of the orally administered recombinant strains was evaluated. RESULTS: After immunization, significantly higher levels of anti-PEDV specific IgG antibodies with PEDV neutralizing activity in the sera and mucosal sIgA antibodies in the tractus genitalis, intestinal mucus, and stools were detected in mice orally administered with the recombinant strain pPG-COE-Col-DCpep/L393, which expressed DCpep and Col targeting ligands fused with the PEDV COE antigen, compared to mice orally immunized with the recombinant strain pPG-COE/L393 without the DCpep and Col targeting ligands. Moreover, in response to restimulation with the PEDV COE antigen in vitro, a significant difference in splenocyte proliferation response and Th2-associated cytokine IL-4 level was observed in the group of mice orally immunized with pPG-COE-Col-DCpep/L393 (p < 0.05) compared to the groups of mice that received pPG-COE-Col/L393 and pPG-COE-DCpep/L393, respectively. CONCLUSIONS: The intestinal M cells- and DCs-targeting oral delivery of genetically engineered Lactobacillus expressing the COE antigen of PEDV can efficiently induce anti-PEDV mucosal, humoral, and cellular immune responses via oral administration, suggesting a promising vaccine strategy against PEDV infection.


Assuntos
Infecções por Coronavirus/veterinária , Células Dendríticas/imunologia , Intestinos/imunologia , Lactobacillus/genética , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas Virais/imunologia , Administração Oral , Animais , Anticorpos Antivirais/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Epitopos/química , Epitopos/imunologia , Imunoglobulina G/sangue , Intestinos/citologia , Lactobacillus/imunologia , Camundongos , Vírus da Diarreia Epidêmica Suína/química , Vírus da Diarreia Epidêmica Suína/genética , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
18.
Mol Cell Probes ; 39: 7-13, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29555467

RESUMO

Salmonid alphaviruses (SAVs), which include the etiological agents of salmon pancreas disease (PD) and sleeping disease (SD), are significant viral pathogens of European salmonid aquaculture, resulting in substantial economic losses to the salmonid-farming industry. Even though many countries including China have not reported the presence of SAV infections, these countries may be seriously threatened by these diseases as the salmon fish import trade increases. Thus, it is indeed necessary to develop efficient detection methods for the diagnosis and prevention of SAV infection. Real-time PCR assays have been increasingly used in viral detection, and in many cases scientists prefer dye-based real-time PCR assays for their high sensitivity and low cost. In this study, we developed a novel, sensitive, low-cost detection method, EvaGreen-based real-time PCR assay for the detection of SAV. This assay exhibited high specificity for SAV1, SAV2, and SAV5 and was able to detect SAV at concentrations as low as 1.5 × 101 copies, making them more sensitive than the approved conventional RT-PCR method (detection limit, 1.5 × 106 copies). Assessment of infected fish samples showed that the sensitivity of EvaGreen-based assay was higher than previously developed SYBR Green assay (227 assay). Thus, we report that the EvaGreen real-time PCR assays is an economical alternative diagnostic method for the rapid detection of SAV1, SAV2, and SAV5 infection, providing improved technical support for the clinical diagnosis and epidemiological investigation of SAV.


Assuntos
Alphavirus/isolamento & purificação , Sondas Moleculares/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonidae/virologia , Animais , Bioensaio , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Fish Shellfish Immunol ; 79: 294-302, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29782916

RESUMO

Our previous studies demonstrated that the nonstructural NV protein of infectious hematopoietic necrosis virus (IHNV) was essential for efficient viral replication and pathogenicity, and that the amino acid residues 32EGDL35 of the NV protein were responsible for nuclear localization, and played important roles in suppressing IFN and inhibiting NF-κB activity. However, little is known about the influence of 32EGDL35 on IHNV replication and pathogenicity. In the present study, two recombinant IHNV strains with deletions of NV 32EGDL35 were generated and the effect on IHNV replication and pathogenicity was explored. Our results showed that both mutants stably replicated in Chinook salmon embryo cells for 15 consecutive passages, and had similar host-tropism as wild-type (wt) IHNV; however, titers of the mutants were lower than those of wt IHNV in CHSE-214 cells. Infection of rainbow trout showed wt IHNV produced 90% cumulative mortality, while the mutants produced 55% and 60% cumulative mortality, respectively. Histopathological evaluation showed that tissues from the liver, brain, kidney, and heart of fish infected with wt IHNV exhibited pathological changes, but significant lesions were found only in the liver and heart of fish infected with the recombinant viruses. In addition, the recombinant viruses induced higher expression levels of IFN1, Mx-1, and IL-6 compared with those induced by wt IHNV. These results indicated that the 32EGDL35 residues were essential for the efficient anti-IFN and NF-κB-inhibiting activity of NV. Our results provide a basis for understanding the roles of 32EGDL35 in IHNV replication and pathogenicity, and may prove beneficial in the prevention and control of IHNV infections of fish.


Assuntos
Aminoácidos/genética , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Proteínas Virais/genética , Replicação Viral , Aminoácidos/metabolismo , Animais , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/genética , Infecções por Rhabdoviridae/virologia , Proteínas Virais/metabolismo , Virulência
20.
BMC Vet Res ; 14(1): 206, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945678

RESUMO

BACKGROUND: Lactobacillus casei (L. casei) is well known for its probiotic property in human and animals. Lactoferricin (Lfcin) polypeptide can effectively modulate host immune responses and have antimicrobial activity in vivo and in vitro. In order to develop a food-grade L. casei system constitutively expressing bovine Lfcin, this study constructed a thymidine auxotrophy (ΔthyA) recombinant L. casei. RESULTS: Based on the thymidylate synthase gene (thyA) insert site, LFEC(Lfcin expression cassette)was inserted into L. casei genome through homologous recombination, successfully expressed and could be stably inherited. The recombinant L. casei, ΔthyA L. casei-LFEC, is sensitive to chloramphenicol and limited when cultured without thymine. Meanwhile, ΔthyA L. casei-LFEC has both good antibacterial activity against Escherichia coli and Staphylococcus aureus and antiviral activity against porcine epidemic diarrhea virus (PEDV). CONCLUSIONS: We successfully constructed a recombinant L. casei strain expressing Lfcin, ΔthyA L. casei-LFEC, which could only survive in the presence of thymine, and had excellent antimicrobial and antiviral activity with good genetic stability and sensitivity. This research provides a cost-effective alternative to the antibiotics with additional biological functions and wider applicability prospect. Using ΔthyA as the selectable mark instead of antibiotic to construct genetic engineering L.casei provides a safe and effective approach of feed additives in livestock raising.


Assuntos
Lacticaseibacillus casei/genética , Lactoferrina/metabolismo , Microrganismos Geneticamente Modificados/genética , Timidina/metabolismo , Animais , Antibacterianos/farmacologia , Bovinos , Cloranfenicol/farmacologia , Engenharia Genética/métodos , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus casei/ultraestrutura , Lactoferrina/genética , Microrganismos Geneticamente Modificados/efeitos dos fármacos , Microrganismos Geneticamente Modificados/metabolismo , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA