Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.271
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 618(7963): 74-79, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977463

RESUMO

The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.

2.
Cell ; 155(7): 1596-609, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360280

RESUMO

Microglia are the resident macrophages of the CNS, and their functions have been extensively studied in various brain pathologies. The physiological roles of microglia in brain plasticity and function, however, remain unclear. To address this question, we generated CX3CR1(CreER) mice expressing tamoxifen-inducible Cre recombinase that allow for specific manipulation of gene function in microglia. Using CX3CR1(CreER) to drive diphtheria toxin receptor expression in microglia, we found that microglia could be specifically depleted from the brain upon diphtheria toxin administration. Mice depleted of microglia showed deficits in multiple learning tasks and a significant reduction in motor-learning-dependent synapse formation. Furthermore, Cre-dependent removal of brain-derived neurotrophic factor (BDNF) from microglia largely recapitulated the effects of microglia depletion. Microglial BDNF increases neuronal tropomyosin-related kinase receptor B phosphorylation, a key mediator of synaptic plasticity. Together, our findings reveal that microglia serve important physiological functions in learning and memory by promoting learning-related synapse formation through BDNF signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem/fisiologia , Microglia/fisiologia , Sinapses , Animais , Receptor 1 de Quimiocina CX3C , Expressão Gênica , Camundongos , Microglia/citologia , Plasticidade Neuronal , Proteínas Quinases/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transdução de Sinais
3.
Trends Biochem Sci ; 48(6): 539-552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841635

RESUMO

Protein-protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as 'undruggable' therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development. Targeting hot spots that have essential roles in both fragment binding and PPIs provides a shortcut for the development of PPI modulators via FBDD. We highlight successful cases of cracking the 'undruggable' problems of PPIs using fragment-based approaches. We also introduce new technologies and future trends. Thus, we hope that this review will provide useful guidance for drug discovery targeting PPIs.


Assuntos
Descoberta de Drogas , Ligação Proteica
4.
Trends Biochem Sci ; 48(6): 568-584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36959016

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Herbicidas/farmacologia , Herbicidas/química , Catálise , Biologia
5.
Proc Natl Acad Sci U S A ; 121(34): e2407285121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133859

RESUMO

Discovering and engineering herbicide-resistant genes is a crucial challenge in crop breeding. This study focuses on the 4-hydroxyphenylpyruvate dioxygenase Inhibitor Sensitive 1-Like (HSL) protein, prevalent in higher plants and exhibiting weak catalytic activity against many ß-triketone herbicides (ß-THs). The crystal structures of maize HSL1A complexed with ß-THs were elucidated, identifying four essential herbicide-binding residues and explaining the weak activity of HSL1A against the herbicides. Utilizing an artificial evolution approach, we developed a series of rice HSL1 mutants targeting the four residues. Then, these mutants were systematically evaluated, identifying the M10 variant as the most effective in modifying ß-THs. The initial active conformation of substrate binding in HSL1 was also revealed from these mutants. Furthermore, overexpression of M10 in rice significantly enhanced resistance to ß-THs, resulting in a notable 32-fold increase in resistance to methyl-benquitrione. In conclusion, the artificially evolved M10 gene shows great potential for the development of herbicide-resistant crops.


Assuntos
Resistência a Herbicidas , Herbicidas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Mutação
6.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701419

RESUMO

It is a vital step to recognize cyanobacteria promoters on a genome-wide scale. Computational methods are promising to assist in difficult biological identification. When building recognition models, these methods rely on non-promoter generation to cope with the lack of real non-promoters. Nevertheless, the factitious significant difference between promoters and non-promoters causes over-optimistic prediction. Moreover, designed for E. coli or B. subtilis, existing methods cannot uncover novel, distinct motifs among cyanobacterial promoters. To address these issues, this work first proposes a novel non-promoter generation strategy called phantom sampling, which can eliminate the factitious difference between promoters and generated non-promoters. Furthermore, it elaborates a novel promoter prediction model based on the Siamese network (SiamProm), which can amplify the hidden difference between promoters and non-promoters through a joint characterization of global associations, upstream and downstream contexts, and neighboring associations w.r.t. k-mer tokens. The comparison with state-of-the-art methods demonstrates the superiority of our phantom sampling and SiamProm. Both comprehensive ablation studies and feature space illustrations also validate the effectiveness of the Siamese network and its components. More importantly, SiamProm, upon our phantom sampling, finds a novel cyanobacterial promoter motif ('GCGATCGC'), which is palindrome-patterned, content-conserved, but position-shifted.


Assuntos
Cianobactérias , Regiões Promotoras Genéticas , Cianobactérias/genética , Biologia Computacional/métodos , Algoritmos
7.
Proc Natl Acad Sci U S A ; 120(7): e2213670120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36749723

RESUMO

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Preparações Farmacêuticas/metabolismo , Autofagia/genética , Linhagem Celular Tumoral , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Expressão Gênica , Lisossomos/metabolismo
8.
Nat Immunol ; 14(12): 1237-46, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185615

RESUMO

Induction of type I interferon is a central event of innate immunity, essential for host defense. Here we report that the transcription factor ELF4 is induced by type I interferon and upregulates interferon expression in a feed-forward loop. ELF4 deficiency leads to reduced interferon production, resulting in enhanced susceptibility to West Nile virus encephalitis in mice. After viral infection, ELF4 is recruited by STING, interacts with and is activated by the MAVS-TBK1 complex, and translocates into the nucleus to bind interferon promoters. Cooperative binding with ELF4 increases the binding affinity of interferon regulatory factors IRF3 and IRF7, which is mediated by EICE elements. Thus, in addition to identifying a regulator of innate immune signaling, we uncovered a role for EICE elements in interferon transactivation.


Assuntos
Proteínas de Ligação a DNA/imunologia , Interferon beta/imunologia , Fatores de Transcrição/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Ligação Proteica/imunologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Análise de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia
9.
Nat Chem Biol ; 19(11): 1372-1383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592155

RESUMO

RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.


Assuntos
Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Humanos , Camundongos , Animais , RNA/genética , RNA/metabolismo , Biossíntese de Proteínas , Doença de Huntington/genética , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
10.
Mol Psychiatry ; 29(4): 1099-1113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212373

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. There is no specific treatment for FXS due to the lack of therapeutic targets. We report here that Elongation Factor 1α (EF1α) forms a complex with two other proteins: Tripartite motif-containing protein 3 (TRIM3) and Murine double minute (Mdm2). Both EF1α-Mdm2 and EF1α-TRIM3 protein complexes are increased in the brain of Fmr1 knockout mice as a result of FMRP deficiency, which releases the normal translational suppression of EF1α mRNA and increases EF1α protein levels. Increased EF1α-Mdm2 complex decreases PSD-95 ubiquitination (Ub-PSD-95) and Ub-PSD-95-C1q interaction. The elevated level of TRIM3-EF1α complex is associated with decreased TRIM3-Complement Component 3 (C3) complex that inhibits the activation of C3. Both protein complexes thereby contribute to a reduction in microglia-mediated phagocytosis and dendritic spine pruning. Finally, we created a peptide that disrupts both protein complexes and restores dendritic spine plasticity and behavioural deficits in Fmr1 knockout mice. The EF1α-Mdm2 and EF1α-TRIM3 complexes could thus be new therapeutic targets for FXS.


Assuntos
Espinhas Dendríticas , Proteína do X Frágil da Deficiência Intelectual , Camundongos Knockout , Microglia , Plasticidade Neuronal , Fator 1 de Elongação de Peptídeos , Fagocitose , Animais , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Microglia/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Espinhas Dendríticas/metabolismo , Fagocitose/fisiologia , Fator 1 de Elongação de Peptídeos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Camundongos Endogâmicos C57BL , Masculino , Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Ubiquitinação , Complemento C3/metabolismo
11.
Rev Med Virol ; 34(1): e2517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282401

RESUMO

Many significant viral infections have been recorded in human history, which have caused enormous negative impacts worldwide. Human-virus protein-protein interactions (PPIs) mediate viral infection and immune processes in the host. The identification, quantification, localization, and construction of human-virus PPIs maps are critical prerequisites for understanding the biophysical basis of the viral invasion process and characterising the framework for all protein functions. With the technological revolution and the introduction of artificial intelligence, the human-virus PPIs maps have been expanded rapidly in the past decade and shed light on solving complicated biomedical problems. However, there is still a lack of prospective insight into the field. In this work, we comprehensively review and compare the effectiveness, potential, and limitations of diverse approaches for constructing large-scale PPIs maps in human-virus, including experimental methods based on biophysics and biochemistry, databases of human-virus PPIs, computational methods based on artificial intelligence, and tools for visualising PPIs maps. The work aims to provide a toolbox for researchers, hoping to better assist in deciphering the relationship between humans and viruses.


Assuntos
Viroses , Vírus , Humanos , Proteínas Virais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Inteligência Artificial , Interações Hospedeiro-Patógeno
12.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950877

RESUMO

Autism spectrum disorder (ASD) is characterized by etiological and phenotypic heterogeneity. Despite efforts to categorize ASD into subtypes, research on specific functional connectivity changes within ASD subgroups based on clinical presentations is limited. This study proposed a symptom-based clustering approach to identify subgroups of ASD based on multiple clinical rating scales and investigate their distinct Electroencephalogram (EEG) functional connectivity patterns. Eyes-opened resting-state EEG data were collected from 72 children with ASD and 63 typically developing (TD) children. A data-driven clustering approach based on Social Responsiveness Scales-Second Edition and Vinland-3 scores was used to identify subgroups. EEG functional connectivity and topological characteristics in four frequency bands were assessed. Two subgroups were identified: mild ASD (mASD, n = 37) and severe ASD (sASD, n = 35). Compared to TD, mASD showed increased functional connectivity in the beta band, while sASD exhibited decreased connectivity in the alpha band. Significant between-group differences in global and regional topological abnormalities were found in both alpha and beta bands. The proposed symptom-based clustering approach revealed the divergent functional connectivity patterns in the ASD subgroups that was not observed in typical ASD studies. Our study thus provides a new perspective to address the heterogeneity in ASD research.


Assuntos
Transtorno do Espectro Autista , Criança , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Eletroencefalografia , Análise por Conglomerados , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico
13.
Nucleic Acids Res ; 51(W1): W25-W32, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158247

RESUMO

Drug discovery, which plays a vital role in maintaining human health, is a persistent challenge. Fragment-based drug discovery (FBDD) is one of the strategies for the discovery of novel candidate compounds. Computational tools in FBDD could help to identify potential drug leads in a cost-efficient and time-saving manner. The Auto Core Fragment in silico Screening (ACFIS) server is a well-established and effective online tool for FBDD. However, the accurate prediction of protein-fragment binding mode and affinity is still a major challenge for FBDD due to weak binding affinity. Here, we present an updated version (ACFIS 2.0), that incorporates a dynamic fragment growing strategy to consider protein flexibility. The major improvements of ACFIS 2.0 include (i) increased accuracy of hit compound identification (from 75.4% to 88.5% using the same test set), (ii) improved rationality of the protein-fragment binding mode, (iii) increased structural diversity due to expanded fragment libraries and (iv) inclusion of more comprehensive functionality for predicting molecular properties. Three successful cases of drug lead discovery using ACFIS 2.0 are described, including drugs leads to treat Parkinson's disease, cancer, and major depressive disorder. These cases demonstrate the utility of this web-based server. ACFIS 2.0 is freely available at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS2/.


Assuntos
Simulação por Computador , Visualização de Dados , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Proteínas/química , Neoplasias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Internet , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos
14.
Proc Natl Acad Sci U S A ; 119(20): e2118129119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561213

RESUMO

Neuropathic pain caused by lesions to somatosensory neurons due to injury or disease is a widespread public health problem that is inadequately managed by small-molecule therapeutics due to incomplete pain relief and devastating side effects. Genetically encoded molecules capable of interrupting nociception have the potential to confer long-lasting analgesia with minimal off-target effects. Here, we utilize a targeted ubiquitination approach to achieve a unique posttranslational functional knockdown of high-voltage-activated calcium channels (HVACCs) that are obligatory for neurotransmission in dorsal root ganglion (DRG) neurons. CaV-aßlator comprises a nanobody targeted to CaV channel cytosolic auxiliary ß subunits fused to the catalytic HECT domain of the Nedd4-2 E3 ubiquitin ligase. Subcutaneous injection of adeno-associated virus serotype 9 encoding CaV-aßlator in the hind paw of mice resulted in the expression of the protein in a subset of DRG neurons that displayed a concomitant ablation of CaV currents and also led to an increase in the frequency of spontaneous inhibitory postsynaptic currents in the dorsal horn of the spinal cord. Mice subjected to spare nerve injury displayed a characteristic long-lasting mechanical, thermal, and cold hyperalgesia underlain by a dramatic increase in coordinated phasic firing of DRG neurons as reported by in vivo Ca2+ spike recordings. CaV-aßlator significantly dampened the integrated Ca2+ spike activity and the hyperalgesia in response to nerve injury. The results advance the principle of targeting HVACCs as a gene therapy for neuropathic pain and demonstrate the therapeutic potential of posttranslational functional knockdown of ion channels achieved by exploiting the ubiquitin-proteasome system.


Assuntos
Canais de Cálcio , Neuralgia , Células Receptoras Sensoriais , Ubiquitinação , Animais , Canais de Cálcio/genética , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Neuralgia/genética , Neuralgia/terapia , Células Receptoras Sensoriais/metabolismo , Ubiquitinação/genética
15.
Proc Natl Acad Sci U S A ; 119(19): e2119990119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522713

RESUMO

Over the years it has been established that SIN1, a key component of mTORC2, could interact with Ras family small GTPases through its Ras-binding domain (RBD). The physical association of Ras and SIN1/mTORC2 could potentially affect both mTORC2 and Ras-ERK pathways. To decipher the precise molecular mechanism of this interaction, we determined the high-resolution structures of HRas/KRas-SIN1 RBD complexes, showing the detailed interaction interface. Mutation of critical interface residues abolished Ras-SIN1 interaction and in SIN1 knockout cells we demonstrated that Ras-SIN1 association promotes SGK1 activity but inhibits insulin-induced ERK activation. With structural comparison and competition fluorescence resonance energy transfer (FRET) assays we showed that HRas-SIN1 RBD association is much weaker than HRas-Raf1 RBD but is slightly stronger than HRas-PI3K RBD interaction, providing a possible explanation for the different outcome of insulin or EGF stimulation. We also found that SIN1 isoform lacking the PH domain binds stronger to Ras than other longer isoforms and the PH domain appears to have an inhibitory effect on Ras-SIN1 binding. In addition, we uncovered a Ras dimerization interface that could be critical for Ras oligomerization. Our results advance our understanding of Ras-SIN1 association and crosstalk between growth factor-stimulated pathways.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proliferação de Células , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas ras/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210361

RESUMO

5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.


Assuntos
5-Metilcitosina/química , Plasmodium falciparum/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Células Germinativas , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/genética , Transcriptoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-39059504

RESUMO

BACKGROUND: Because young children cannot self-report symptoms, there is a need for parent surrogate reports. While early work suggested parent child alignment for eosinophil esophagitis (EoE) patient reported outcomes (PROs), the longitudinal alignment is unclear. OBJECTIVE: To assess the agreement and longitudinal stability of PROs between children with EoE and their parents. METHODS: 292 parent-child respondents completed 723 completed questionnaires over 5 years in an observational trial in the Consortium of Eosinophilic Gastrointestinal Disease Researchers. The change in and agreement between parent and child Pediatric Eosinophilic Esophagitis Symptom Score version 2 (PEESSv2.0) and Pediatric Quality of Life Eosinophilic Esophagitis Module (PedsQL-EoE) PROs over time were assessed using Pearson correlation and Bland-Altman analyses. Clinical factors influencing PROs and their agreement were evaluated using linear mixed models. RESULTS: The cohort had a median disease duration equalling 3.7 years and was predominantly male (73.6%) and white (85.3%). Child and parent PEESSv2.0 response groups were identified and were stable over time. There was strong correlation between child and parent report (PEESSv2.0 0.83, PedsQL-EoE 0.74) with minimal pairwise differences for symptoms. Longitudinally, parent-reported PedsQL-EoE scores were stable (p ≥ 0.32), whereas child-reported PedsQL-EoE scores improved (p = 0.026). A larger difference in parent and child PedsQL-EoE reports was associated with younger age (p < 0.001) and differences were driven by psychosocial PRO domains. CONCLUSION: There is strong longitudinal alignment between child and parent report using EoE PROs. These data provide evidence that parent report is a stable proxy for objective EoE symptoms in their children.

18.
J Allergy Clin Immunol ; 154(2): 375-386.e4, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750825

RESUMO

BACKGROUND: The Index of Severity for Eosinophilic Esophagitis (I-SEE) is a new expert-defined clinical tool that classifies disease severity of eosinophilic esophagitis (EoE). OBJECTIVE: We aimed to determine whether I-SEE is associated with patient characteristics, molecular features of EoE, or both. METHODS: We analyzed a prospective cohort of patients with EoE from the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR). Associations between I-SEE and clinical and molecular features (assessed by an EoE diagnostic panel [EDP]) were assessed. RESULTS: In 318 patients with chronic EoE (209 adults, 109 children), median total I-SEE score was 7.0, with a higher symptoms and complications score in children than adults (4.0 vs 1.0; P < .001) and higher inflammatory and fibrostenotic features scores in adults than children (3.0 vs 1.0 and 3.0 vs 0, respectively; both P < .001). Total I-SEE score had a bimodal distribution with the inactive to moderate categories and severe category. EDP score correlated with total I-SEE score (r = -0.352, P < .001) and both inflammatory and fibrostenotic features scores (r = -0.665, P < .001; r = -0.446, P < .001, respectively), but not with symptoms and complications scores (r = 0.047, P = .408). Molecular severity increased from inactive to mild and moderate, but not severe, categories. Longitudinal changes of modified I-SEE scores and inflammatory and fibrostenotic features scores reflected histologic and molecular activity. CONCLUSIONS: I-SEE score is associated with select clinical features across severity categories and with EoE molecular features for nonsevere categories, warranting further validation.


Assuntos
Esofagite Eosinofílica , Índice de Gravidade de Doença , Humanos , Esofagite Eosinofílica/diagnóstico , Masculino , Feminino , Criança , Adulto , Adolescente , Pré-Escolar , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
19.
Nano Lett ; 24(31): 9608-9616, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39012768

RESUMO

Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.

20.
Nano Lett ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132906

RESUMO

Probabilistic bits (p-bits) with thermal- and spin torque-induced nondeterministic magnetization switching are promising candidates for performing probabilistic computing. Previously reported spin torque p-bits include volatile low-energy barrier nanomagnets (LBNMs) with spontaneously fluctuating magnetizations and initialization-necessary nonvolatile magnets. However, initialization-free nonvolatile spin torque p-bits are still lacking. Here, we demonstrate moderately thermal stable spin-orbit torque (SOT) p-bits with non-consecutively deposited Pt//Pt/Co/Pt stacks. Backhopping-like (BH) magnetization switching with a wide range current-tunable probability of final up and down magnetization states from 0% to 100% was achieved, regardless of the initial magnetization state, which was attributed to the interplay of SOT and thermal contributions. Integer factorization using such BH-SOT p-bits in zero magnetic field was demonstrated at times that are significantly shorter than those of existing nonvolatile STT or volatile LBNMs p-bits. Our realization of initialization-free and magnetic field-free moderately thermally stable BH-SOT p-bits opens up a new perspective for probabilistic spintronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA