Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biomed Microdevices ; 21(1): 8, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617619

RESUMO

Current therapeutic options against cutaneous leishmaniasis are plagued by several weaknesses. The effective topical delivery of an antileishmanial drug would be useful in treating some forms of cutaneous leishmaniasis. Toward this end, a microneedle based delivery approach for the antileishmanial drug amphotericin B was investigated in murine models of both New World (Leishmania mexicana) and Old World (Leishmania major) infection. In the L. mexicana model, ten days of treatment began on day 35 post infection, when the area of nodules averaged 9-15 mm2. By the end of the experiment, a significant difference in nodule area was observed for all groups receiving topical amphotericin B at 25 mg/kg/day after application of microneedle arrays of 500, 750, and 1000 µM in nominal length compared to the group that received this dose of topical amphotericin B alone. In the L. major model, ten days of treatment began on day 21 post infection when nodule area averaged 51-65 mm2 in the groups. By the end of the experiment, there was no difference in nodule area between the group receiving 25 mg/kg of topical amphotericin B after microneedle application and any of the non-AmBisome groups. These results show the promise of topical delivery of amphotericin B via microneedles in treating relatively small nodules caused by L. mexicana. These data also show the limitations of the approach against a disseminated L. major infection. Further optimization of microneedle delivery is needed to fully exploit this strategy for cutaneous leishmaniasis treatment.


Assuntos
Anfotericina B/farmacologia , Sistemas de Liberação de Medicamentos , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Agulhas , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Feminino , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C
2.
Essays Biochem ; 65(3): 409-416, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34223612

RESUMO

3D printing, or additive manufacturing, is a process for patterning functional materials based on the digital 3D model. A bioink that contains cells, growth factors, and biomaterials are utilized for assisting cells to develop into tissues and organs. As a promising technique in regenerative medicine, many kinds of bioprinting platforms have been utilized, including extrusion-based bioprinting, inkjet bioprinting, and laser-based bioprinting. Laser-based bioprinting, a kind of bioprinting technology using the laser as the energy source, has advantages over other methods. Compared with inkjet bioprinting and extrusion-based bioprinting, laser-based bioprinting is nozzle-free, which makes it a valid tool that can adapt to the viscosity of the bioink; the cell viability is also improved because of elimination of nozzle, which could cause cell damage when the bioinks flow through a nozzle. Accurate tuning of the laser source and bioink may provide a higher resolution for reconstruction of tissue that may be transplanted used as an in vitro disease model. Here, we introduce the mechanism of this technology and the essential factors in the process of laser-based bioprinting. Then, the most potential applications are listed, including tissue engineering and cancer models. Finally, we present the challenges and opportunities faced by laser-based bioprinting.


Assuntos
Bioimpressão , Neoplasias , Bioimpressão/métodos , Humanos , Lasers , Neoplasias/terapia , Engenharia Tecidual/métodos , Alicerces Teciduais
3.
Polymers (Basel) ; 13(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198796

RESUMO

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320-500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320-500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400-500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.

4.
J Biomed Nanotechnol ; 16(3): 263-282, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32493539

RESUMO

Suturing has been the gold standard approach to close wounds for many decades. However, suturing causes tissue damage, which is accompanied by foreign body reaction, entry of pathogens, complications, infection, or death. In addition, the procedure is usually time-consuming, requiring manual dexterity and free moving space. Other adhesive approaches have been proposed and demonstrated with great potential, including laser-assisted tissue closure with either photothermal or photochemical reactions, application of nanoparticles, glues, constructs based on extracellular matrix (ECM), microbarbs, bio-inspired structures, and tape. The quality of closure has been evaluated by histological methods, indexing, morphology, tensile testing, patency rate, leakage pressure, and burst pressure. All the novel tissue joining methods aim to provide an adhesive with appropriate strength, non-cytotoxicity, and minimal damage. The capability for rapid attachment and release may further reduce surgical procedure time. More research is needed to prove the feasibility of new tissue joining techniques based on the type of tissue, surface chemistry, and working environment.


Assuntos
Nanopartículas , Adesivos Teciduais , Adesivos , Matriz Extracelular , Lasers
6.
Interface Focus ; 8(3): 20170063, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696093

RESUMO

Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA