Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 127921, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944741

RESUMO

To reduce the white pollution, the eco-friendly biodegradable poly (butylene adipate-co-terephthalate) (PBAT)-based films had attracted increasing interests worldwide. However, the high-cost of the PBAT had limited the large-scale development and application. In this work, 10 wt% low-cost lignin was introduced into the PBAT to prepare composite films by melt blending and blow molding, and the POSS(epoxy)8 was selected as the compatibilizer to improve the compatibility of PBAT and lignin. The maximum tensile strength and the nominal strain at break subsequently increased by 48.2 % and 21.4 % respectively, while the water vapor permeability enhanced by 9.9 %. Furthermore, the UV aging resistance of PBAT/lignin films were significantly improved, with only 1 wt% POSS(epoxy)8 content. This work provides an efficient strategy to foster the end-user confidence in the low-cost and eco-friendly biodegradable polymer materials with efficient performance.


Assuntos
Lignina , Poliésteres , Resinas Epóxi , Adipatos
2.
Food Chem ; 446: 138880, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432140

RESUMO

Biodegradable food packaging films with good antimicrobial properties are highly sought after for prolonging the shelf-life of fruits and vegetables whilst minimizing waste streams originating from the food sector. In this work, a series of PBAT/PLA food packaging films containing sodium dehydroacetate-loaded diatomite (SD/D) as an antimicrobial agent were fabricated. Structural analyses showed that the sodium dehydroacetate was incorporated into the pores of the diatomite. A uniform dispersion of SD/D in the composite films effectively enhanced water and gas permeability, whilst also giving the films good mechanical properties. The slow release of SD endowed the composite films with long-acting antibacterial ability (>90 % bacteriostasis rate for E. coli and >85 % bacteriostasis rate for S. aureus). The composite films were able to effectively maintain the quality of banana fruits during storage at room temperature, encouraging their use in food applications where non-biodegradable petrochemical-derived packaging films have traditionally been used.


Assuntos
Anti-Infecciosos , Terra de Diatomáceas , Embalagem de Alimentos , Pironas , Antibacterianos/farmacologia , Antibacterianos/química , Água , Escherichia coli , Staphylococcus aureus , Poliésteres/química , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA