Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38135967

RESUMO

In implant treatment, the reduction and structural changes in the alveolar ridge that occur after tooth extraction limit the length, width, and placement position of the implant body, impair esthetics, and, in some cases, make implant placement difficult. To solve these problems, an alveolar ridge preservation (ARP) technique, which is performed simultaneously with tooth extraction, generally aims to promote bone regeneration and prevent alveolar ridge reduction by filling the extraction socket with bone graft material and then covering it with a barrier membrane to protect against the invasion of epithelial tissue. The extraction socket provides a favorable environment for bone regeneration throughout the healing period because the blood supply is abundant, and it effectively retains the bone graft material by using the remaining bone wall of the socket. In recent years, advances in bioengineering technology have led to the development of graft materials with various biological properties, but there is currently no clear consensus regarding the selection of surgical techniques and materials depending on the condition of the alveolar ridge. This review will provide a comprehensive survey of the evidence accumulated to date on ARP, present many cases according to the clinical situation, and discuss various treatment options.

2.
Heliyon ; 5(6): e01991, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31338459

RESUMO

Periodontal disease involves the chronic inflammation of tooth supporting periodontal tissues. As the disease progresses, it manifests destruction of periodontal tissues and eventual tooth loss. The regeneration of lost periodontal tissue has been one of the most important subjects in periodontal research. Since their discovery, periodontal ligament stem cells (PDLSCs), have been transplanted into periodontal bony defects to examine their regenerative potential. Periodontal defects were successfully regenerated using PDLSC sheets, which were fabricated by cell sheet engineering in animal models, and for which clinical human trials are underway. To expand the utility of PDLSC sheet, we attempted to construct periodontal tissues around titanium implants with the goal of facilitating the prevention of peri-implantitis. In so doing, we found newly formed cementum-periodontal ligament (PDL) structures on the implant surface. In this mini review, we summarize the literature regarding cell-based periodontal regeneration using PDLSCs, as well as previous trials aimed at forming periodontal tissues around dental implants. Moreover, the recent findings in cementogenesis are reviewed from the perspective of the formation of further stable periodontal attachment structure on dental implant. This mini review aims to summarize the current status of the creation of novel periodontal tissue-bearing dental implants, and to consider its future direction.

3.
Regen Ther ; 10: 77-83, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30671501

RESUMO

INTRODUCTION: Many cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ), which is an intractable disease, have been reported. Although a general intravenous injection of multipotent mesenchymal stromal cells (MSCs) may be effective for treating BRONJ, it has some severe problems. Therefore, our aim was to develop a treatment of locally administered MSCs. In this study, we investigated the effect of MSC sheet transplantation in the mandibular bone healing in beagle dogs, which were administered zoledronate and dexamethasone. METHODS: MSCs isolated from subcutaneous fat were seeded onto temperature-responsive culture dishes to produce MSC sheets. Zoledronate and dexamethasone were administered to beagle dogs. Then, the parts of mandibular cortical bones were removed, and MSC sheets were transplanted to cover those bone defects (MSC sheet transplant side) or not (Control side). The specimens were evaluated in micro CT, histology, and immunohistochemistry. RESULTS: Four weeks after surgery, redness and swellings were observed in the mucosal wounds of the control sides of 2 of 3 dogs. In contrast, the mucosal wounds of the MSC sheet transplant sides of all dogs completely healed. Histological images showed some free sequestrums and many bacterial colonies, and Immunohistological analysis showed some cathepsin K-positive multinuclear cells detached from jaw bone surfaces in the control sides. CONCLUSIONS: MSC sheet transplantation promotes healthy healing of wounds caused by zoledronate and dexamethasone in canine mandibular bones. And the injured canine mandibular bones administered zoledronate and dexamethasone showed BRONJ-like findings.

4.
Tissue Eng Part A ; 24(15-16): 1273-1282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29495925

RESUMO

Osseointegrated implants have been recognized as being very reliable and having long-term predictability. However, host defense mechanisms against infection have been known to be impaired around a dental implant because of the lack of a periodontal ligament (PDL). The purpose of our experimental design was to produce cementum and PDL on the implant surface adopting cell sheet technology. To this aim we used PDL-derived cells, which contain multipotential stem cells, as the cell source and we cultured them on an implant material constituted of commercially pure titanium treated with acid etching, blasting, and a calcium phosphate (CaP) coating to improve cell attachment. Implants with adhered human PDL cell sheets were transplanted into bone defects in athymic rat femurs as a xenogeneic model. Implants with adhered canine PDL-derived cell sheets were transplanted into canine mandibular bone as an autologous model. We confirmed that PDL-derived cells cultured with osteoinductive medium had the ability to induce cementum formation. The attachment of PDL cells onto the titanium surface with three surface treatments was accelerated, compared with that onto the smooth titanium surface, at 40 min after starting incubation. Results in the rat model showed that cementum-like and PDL-like tissue was partly observed on the titanium surface with three surface treatments in combination with adherent PDL-derived cell sheets. On the other hand, osseointegration was observed on almost all areas of the smooth titanium surface that had PDL-derived cell sheets, but did not have the three surface treatments. In the canine model, histological observation indicated that formation of cementum-like and PDL-like tissue was induced on the titanium surface with surface treatments and that the PDL-like tissue was perpendicularly oriented between the titanium surface with cementum-like tissue and the bone. Results demonstrate that a periodontal-like structure was formed around a titanium implant, which is similar to the environment existing around a natural tooth. The clinical application of dental implants combined with a cell sheet technique may be feasible as an alternative implant therapy. Furthermore, application of this methodology may play an innovative role in the periodontal, prosthetic, and orthodontic fields in dentistry.


Assuntos
Prótese Ancorada no Osso , Interface Osso-Implante , Implantação Dentária Endóssea , Implantes Dentários , Ligamento Periodontal , Titânio , Animais , Cães , Xenoenxertos , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/transplante , Ratos , Ratos Nus , Propriedades de Superfície
5.
Regen Ther ; 6: 83-89, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30271842

RESUMO

INTRODUCTION: Large animal experiments are important for translational research in regenerative medicine. Recently, mini pigs have been used in large animal studies and surgical training. The use of multipotent mesenchymal stromal cell (MSC) sheets for the treatment of many diseases is increasing. The purpose of the present study was to establish optimal methods for generating mini pig MSC sheets from various tissues and to compare the properties of MSCs in these sheets. METHODS: MSCs were isolated from the bone marrow, adipose, periodontal ligament, gingiva, or periosteum of mini pigs. The proliferation, markers, and mRNA expression of these MSCs were examined. Colony-forming and differentiation assays were performed. MSCs were seeded onto temperature-responsive culture dishes to develop MSC sheets. RESULTS: MSCs derived from bone marrow (BMSCs), adipose (ASCs), periodontal ligament (PDLCs), gingiva (GMSCs), and periosteum (PSCs) were positive for MSC-related markers. BMSCs and PSCs showed increased proliferation compared with other MSCs. The osteogenic potential of PDLCs and the adipogenic potential of PSCs were the highest among these MSCs. The expression levels of COL1A1 and COL3A1 in BMSCs and PSCs were significantly higher than those in other MSCs. The expression levels of FGF2, VEGFA, ICAM-1, and TIE-1 in GMSCs were significantly higher than those in other MSCs. PSCs showed the highest levels of TGF-ß1 and ANG-1 expression among all MSC types. We succeeded in developing MSC sheets from BMSCs, ASCs, and PSCs. CONCLUSIONS: We developed methods to generate MSC sheets from various tissues of mini pigs, and these methods are useful to pursue regenerative translational research using mini pigs.

6.
Regen Ther ; 7: 98-107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30271858

RESUMO

INTRODUCTION: Endochondral ossification is one of a key process for bone maturation. Tsukushi (TSK) is a novel member of the secreted small leucine-rich repeat proteoglycan (SLRP) family. SLRPs localize to skeletal regions and play significant roles during whole phases of bone development. Although prior evidence suggests that TSK may be involved in the regulation of bone formation, its role in skeletal development has not yet been elucidated. METHODS: In the present study, we examined TSK's function during bone growth by comparing skeletal growth of TSK deficient (TSK-/-) mice and wild type (WT) mice. And an in vitro experiment using siRNA transfection of a chondrogenic cell line was performed. RESULTS: TSK-/- mice exhibited decreased weight and short stature at 3 weeks of age due to decreased longitudinal bone growth coupled with low bone mass. Furthermore, an in vitro experiment using siRNA transfection into a chondrogenic cell line revealed that decreased TSK expression induced down-regulation of key chondrogenic marker gene expression and up-regulation of mid-to-late chondrogenic markers gene expression. CONCLUSIONS: Our results reveal that TSK regulates bone elongation and bone mass by modulating growth plate chondrocyte function and consequently, overall body size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA