Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(5): 2414-2424, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35449295

RESUMO

The lysine-63 deubiquitinase cylindromatosis (CYLD) is long recognized as a tumor suppressor in immunity and inflammation, and its loss-of-function mutations lead to familial cylindromatosis. However, recent studies reveal that CYLD is enriched in mammalian brain postsynaptic densities, and a gain-of-function mutation causes frontotemporal dementia (FTD), suggesting critical roles at excitatory synapses. Here we report that CYLD drives synapse elimination and weakening by acting on the Akt-mTOR-autophagy axis. Mice lacking CYLD display abnormal sociability, anxiety- and depression-like behaviors, and cognitive inflexibility. These behavioral impairments are accompanied by excessive synapse numbers, increased postsynaptic efficacy, augmented synaptic summation, and impaired NMDA receptor-dependent hippocampal long-term depression (LTD). Exogenous expression of CYLD results in removal of established dendritic spines from mature neurons in a deubiquitinase activity-dependent manner. In search of underlying molecular mechanisms, we find that CYLD knockout mice display marked overactivation of Akt and mTOR and reduced autophagic flux, and conversely, CYLD overexpression potently suppresses Akt and mTOR activity and promotes autophagy. Consequently, abrogating the Akt-mTOR-autophagy signaling pathway abolishes CYLD-induced spine loss, whereas enhancing autophagy in vivo by the mTOR inhibitor rapamycin rescues the synaptic pruning and LTD deficits in mutant mice. Our findings establish CYLD, via Akt-mTOR signaling, as a synaptic autophagy activator that exerts critical modulations on synapse maintenance, function, and plasticity.


Assuntos
Macroautofagia , Proteínas Proto-Oncogênicas c-akt , Animais , Enzimas Desubiquitinantes/metabolismo , Mamíferos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Mol Psychiatry ; 26(1): 247-264, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32709994

RESUMO

Ubiquitination is a fundamental posttranslational protein modification that regulates diverse biological processes, including those in the CNS. Several topologically and functionally distinct polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome for degradation, which has been established as a major mechanism driving neural circuit deconstruction and remodeling. In contrast, proteasome-independent non-proteolytic polyubiquitin chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play essential roles in an array of signal transduction processes. Despite being a cornerstone in immune signaling and abundant in the mammalian brain, these non-proteolytic chains are underappreciated in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights about some fundamental roles played by these non-degradative chains in neuronal function and plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, we discuss recent advances on these nonconventional ubiquitin chains in neural development, function, plasticity, and related pathologies.


Assuntos
Encefalopatias/metabolismo , Encefalopatias/patologia , Neurônios/metabolismo , Poliubiquitina/metabolismo , Ubiquitinação , Animais , Humanos , Neurônios/citologia , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma
3.
Mol Psychiatry ; 26(7): 3444-3460, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32929213

RESUMO

Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.


Assuntos
Proteínas de Transporte , Proteínas de Homeodomínio , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Fatores do Domínio POU , Esquizofrenia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Esquizofrenia/genética
4.
J Neurogenet ; 35(4): 358-369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092163

RESUMO

Addiction results from drug-elicited alterations of synaptic plasticity mechanisms in dopaminergic reward circuits. Impaired metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) and accumulation of synaptic Ca2+-permeable AMPA receptors (CP-AMPARs) following drug exposure have emerged as important mechanisms underlying drug craving and relapse. Here we show that repeated cocaine exposure in vivo causes transient but complete loss of mGluR1- and mTOR (mammalian target of rapamycin)-dependent LTD in layer 5 pyramidal neurons of mouse prefrontal cortex (PFC), a major dopaminergic target in the reward circuitry. This mGluR1-LTD impairment was prevented by in vivo administration of an mGluR1 positive allosteric modulator (PAM) and rescued by inhibition of dopamine D1 receptors, suggesting that impaired mGluR1 tone and excessive D1 signaling underlie this LTD deficit. Concurrently, CP-AMPARs were generated, indicated by increased sensitivity to the CP-AMPAR inhibitor Naspm and rectification of synaptic AMPAR currents, which were reversed by PAM in cocaine-exposed mice. Finally, these CP-AMPARs mediate an abnormal spike-timing-dependent long-term potentiation enabled by cocaine exposure. Our findings reveal a mechanism by which cocaine impairs LTD and remodels synaptic AMPARs to influence Hebbian plasticity in the PFC. Failure to undergo LTD may prevent the reversal of drug-potentiated brain circuits to their baseline states, perpetuating addictive behaviors.HIGHLIGHTSA mGluR1- and mTOR-dependent LTD is present in the mouse medial prefrontal cortex.Repeated cocaine exposure in vivo temporally but completely abolishes prefrontal mGluR1-LTD.Impaired mGluR1 function and excessive D1 DA signaling likely underlie cocaine impairment of mGluR1-LTD.Ca2+-permeable AMPA receptors are generated by cocaine exposure, likely resulting from mGluR1-LTD impairment, and contribute to a cocaine-induced extended spike timing LTP.


Assuntos
Cocaína , Receptores de Glutamato Metabotrópico , Animais , Cocaína/farmacologia , Camundongos , Plasticidade Neuronal , Córtex Pré-Frontal/metabolismo , Receptores de AMPA , Receptores de Glutamato Metabotrópico/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(41): E8760-E8769, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973854

RESUMO

Ubiquitination-directed proteasomal degradation of synaptic proteins, presumably mediated by lysine 48 (K48) of ubiquitin, is a key mechanism in synapse and neural circuit remodeling. However, more than half of polyubiquitin (polyUb) species in the mammalian brain are estimated to be non-K48; among them, the most abundant is Lys 63 (K63)-linked polyUb chains that do not tag substrates for degradation but rather modify their properties and activity. Virtually nothing is known about the role of these nonproteolytic polyUb chains at the synapse. Here we report that K63-polyUb chains play a significant role in postsynaptic protein scaffolding and synaptic strength and plasticity. We found that the postsynaptic scaffold PSD-95 (postsynaptic density protein 95) undergoes K63 polyubiquitination, which markedly modifies PSD-95's scaffolding potentials, enables its synaptic targeting, and promotes synapse maturation and efficacy. TNF receptor-associated factor 6 (TRAF6) is identified as a direct E3 ligase for PSD-95, which, together with the E2 complex Ubc13/Uev1a, assembles K63-chains on PSD-95. In contrast, CYLD (cylindromatosis tumor-suppressor protein), a K63-specific deubiquitinase enriched in postsynaptic densities, cleaves K63-chains from PSD-95. We found that neuronal activity exerts potent control of global and synaptic K63-polyUb levels and, through NMDA receptors, drives rapid, CYLD-mediated PSD-95 deubiquitination, mobilizing and depleting PSD-95 from synapses. Silencing CYLD in hippocampal neurons abolishes NMDA-induced chemical long-term depression. Our results unveil a previously unsuspected role for nonproteolytic polyUb chains in the synapse and illustrate a mechanism by which a PSD-associated K63-linkage-specific ubiquitin machinery acts on a major postsynaptic scaffold to regulate synapse organization, function, and plasticity.


Assuntos
Proteína 4 Homóloga a Disks-Large/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Poliubiquitina/metabolismo , Densidade Pós-Sináptica , Complexo de Endopeptidases do Proteassoma/metabolismo , Sinapses/fisiologia , Animais , Hipocampo/citologia , Lisina , Camundongos , Camundongos Knockout , Neurônios/citologia , Ubiquitinação
6.
J Neurosci ; 37(4): 986-997, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123030

RESUMO

Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. SIGNIFICANCE STATEMENT: It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to relapse. We found that repeated cocaine exposure alters a Hebbian associative synaptic learning rule that governs activity-dependent synaptic plasticity in the mouse prefrontal cortex, characterized by a broader temporal window and a lower threshold for spike-timing-dependent LTP (t-LTP), a cellular form of learning and memory. This rule change is caused by cocaine-exacerbated D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons that in turn pathologically recruits l-type Ca2+ channels to facilitate coincidence detection during t-LTP induction. Our study provides novel insights on how cocaine, even with only brief exposure, may prime neural circuits for subsequent experience-dependent remodeling that may underlie certain addictive behavior.


Assuntos
Cocaína/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/fisiologia , Feminino , Injeções Intraperitoneais , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/fisiologia , Distribuição Aleatória , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia
7.
J Neurogenet ; 31(4): 325-336, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29117754

RESUMO

Our earlier genetic screen uncovered a paraquat-sensitive leg-shaking mutant quiver1 (qvr1), whose gene product interacts with the Shaker (Sh) K+ channel. We also mapped the qvr locus to EY04063 and noticed altered day-night activity patterns in these mutants. Such circadian behavioral defects were independently reported by another group, who employed the qvr1 allele we supplied them, and attributed the extreme restless phenotype of EY04063 to the qvr gene. However, their report adopted a new noncanonical gene name sleepless (sss) for qvr. In addition to qvr1 and qvrEY, our continuous effort since the early 2000s generated a number of novel recessive qvr alleles, including ethyl methanesulfonate (EMS)-induced mutations qvr2 and qvr3, and P-element excision lines qvrip6 (imprecise jumpout), qvrrv7, and qvrrv9 (revertants) derived from qvrEY. Distinct from the original intron-located qvr1 allele that generates abnormal-sized mRNAs, qvr2, and qvr3 had their lesion sites in exons 6 and 7, respectively, producing nearly normal-sized mRNA products. A set of RNA-editing sites are nearby the lesion sites of qvr3 and qvrEY on exon 7. Except for the revertants, all qvr alleles display a clear ether-induced leg-shaking phenotype just like Sh, and weakened climbing abilities to varying degrees. Unlike Sh, all shaking qvr alleles (except for qvrf01257) displayed a unique activity-dependent enhancement in excitatory junction potentials (EJPs) at larval neuromuscular junctions (NMJs) at very low stimulus frequencies, with qvrEY displaying the largest EJP and more significant NMJ overgrowth than other alleles. Our detailed characterization of a collection of qvr alleles helps to establish links between novel molecular lesions and different behavioral and physiological consequences, revealing how modifications of the qvr gene lead to a wide spectrum of phenotypes, including neuromuscular hyperexcitability, defective motor ability and activity-rest cycles.


Assuntos
Alelos , Proteínas de Drosophila/genética , Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Membrana , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Canais de Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo
8.
J Neurosci ; 35(13): 5097-108, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834037

RESUMO

Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Memória de Curto Prazo/fisiologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Masculino , Metilação , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/fisiologia , Células Piramidais/fisiologia
9.
J Neurogenet ; 30(3-4): 259-275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27868467

RESUMO

Intrinsic electric activities of neurons play important roles in establishing and refining neural circuits during development. However, how the underlying ionic currents undergo postembryonic reorganizations remains largely unknown. Using acutely dissociated neurons from larval, pupal, and adult Drosophila brains, we show drastic re-assemblies and compensatory regulations of voltage-gated (IKv) and Ca2+-activated (IK(Ca)) K+ currents during postembryonic development. Larval and adult neurons displayed prominent fast-inactivating IKv, mediated by the Shaker (Sh) channel to a large extent, while in the same neurons IK(Ca) was far smaller in amplitude. In contrast, pupal neurons were characterized by large sustained IKv and prominent IK(Ca), encoded predominantly by the slowpoke (slo) gene. Surprisingly, deletion of Sh in the ShM null mutant removed inactivating, transient IKv from large portions of neurons at all stages. Interestingly, elimination of Sh currents was accompanied by upregulation of non-Sh transient IKv. In comparison, the slo1 mutation abolished the vast majority of IK(Ca), particularly at the pupal stage. Strikingly, the deficiency of IK(Ca) in slo pupae was compensated by the transient component of IKv mediated by Sh channels. Thus, IK(Ca) appears to play critical roles in pupal development and its absence induces functional compensations from a specific transient IKv current. While mutants lacking either Sh or slo currents survived normally, Sh;;slo double mutants deficient in both failed to survive through pupal metamorphosis. Together, our data highlight significant reorganizations and homeostatic compensations of K+ currents during postembryonic development and uncover previously unrecognized roles for Sh and slo in this plastic process.


Assuntos
Drosophila/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Canais de Potássio/metabolismo , Animais , Homeostase/fisiologia
10.
J Neurogenet ; 30(3-4): 297-305, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627024

RESUMO

Cholinergic dysfunction contributes to cognitive deficits in schizophrenia. The atypical antipsychotic clozapine improves cognition in patients with schizophrenia, possibly through modulation of the cholinergic system. However, little is known about specific underlying mechanisms. We investigated the acute and chronic effects of clozapine on cholinergic synaptic transmission in cultured superior cervical ganglion (SCG) neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) were detected and were reversibly inhibited by the nicotinic receptor antagonist d-tubocurarine, confirming that the synaptic responses were primarily mediated by nicotinic receptors. Bath application of clozapine at therapeutic concentrations rapidly and reversely inhibited both the amplitude and frequency of sEPSCs in a concentration-dependent manner, without changing either rise or decay time, suggesting that clozapine effects have both presynaptic and postsynaptic origins. The acute effects of clozapine on sEPSCs were recapitulated by chronic treatment of SCG cultures with similar concentrations of clozapine, as clozapine treatment for 4 d reduced the frequency and amplitude of sEPSCs without affecting their kinetics. Cell survival analysis indicated that SCG neuron cell counts after chronic clozapine treatment were comparable to the control group. These results demonstrate that therapeutic concentrations of clozapine suppress nicotinic synaptic transmission in SCG cholinergic synapses, a simple in vitro preparation of cholinergic transmission.


Assuntos
Antipsicóticos/farmacologia , Clozapina/farmacologia , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Camundongos , Gânglio Cervical Superior
11.
PLoS Biol ; 10(11): e1001427, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185133

RESUMO

Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.


Assuntos
Metilação de DNA , Histonas/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Sítio de Iniciação de Transcrição , Adulto , Animais , Sequência de Bases , Criança , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Mapeamento Cromossômico , Cognição , Contactinas/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Epigênese Genética , Evolução Molecular , Redes Reguladoras de Genes , Loci Gênicos , Histonas/genética , Humanos , Lisina/metabolismo , Macaca/genética , Transtornos Mentais/genética , Neurônios/citologia , Pan troglodytes/genética , Filogenia , Proteínas do Grupo Polycomb/metabolismo , Córtex Pré-Frontal/metabolismo , Sequências Reguladoras de Ácido Nucleico , Especificidade da Espécie , Transcrição Gênica
12.
J Neurogenet ; 28(1-2): 98-111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24702501

RESUMO

Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.


Assuntos
Corpo Estriado/patologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Guanilato Quinases/deficiência , Proteínas de Membrana/deficiência , Transtornos dos Movimentos/genética , Doenças Neurodegenerativas/genética , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Benzazepinas/farmacologia , Contagem de Células , Proteína 4 Homóloga a Disks-Large , Agonistas de Dopamina/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/genética , Guanilato Quinases/genética , Magnésio/farmacologia , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Atividade Motora/genética , Doenças Neurodegenerativas/patologia , Neurônios/fisiologia
13.
J Neurogenet ; 27(1-2): 43-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23527882

RESUMO

Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-ß-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Membranas Sinápticas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Colesterol/metabolismo , Gangliosídeo G(M1)/metabolismo , Masculino , Microdomínios da Membrana/ultraestrutura , Microscopia Eletrônica de Transmissão , Densidade Pós-Sináptica/ultraestrutura , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Membranas Sinápticas/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 107(37): 16366-71, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805489

RESUMO

Dopamine release associated with motivational arousal is thought to drive goal-directed learning and consolidation of acquired memories. This dopamine hypothesis of learning and motivation directly suggests that dopamine is necessary for modifications of excitatory synapses in dopamine terminal fields, including the prefrontal cortex (PFC), to "stamp in" posttrial memory traces. It is unknown how such enabling occurs in native circuits tightly controlled by GABAergic inhibitory tone. Here we report that dopamine, via both D1-class receptors (D1Rs) and D2-class receptors (D2Rs), enables the induction of spike timing-dependent long-term potentiation (t-LTP) in layer V PFC pyramidal neurons over a "window" of more than 30 ms that is otherwise closed under intact inhibitory constraint. Dopamine acts at D2Rs in local GABAergic interneurons to suppress inhibitory transmission, gating the induction of t-LTP. Moreover, dopamine activates postsynaptic D1Rs in excitatory synapses to allow t-LTP induction at a substantially extended, normally ineffective, timing interval (+30 ms), thus increasing the associability of prepost coincident stimuli. Although the D2R-mediated disinhibition alone is sufficient to gate t-LTP at a normal timing (+10 ms), t-LTP at +30 ms requires concurrent activation of both D1Rs and D2Rs. Our results illustrate a previously unrecognized circuit-level mechanism by which dopamine receptors in separate microcircuits cooperate to drive Hebbian synaptic plasticity across a significant temporal window under intact inhibition. This mechanism should be important in functioning of interconnected PFC microcircuits, in which D1Rs and D2Rs are not colocalized but their coactivation is necessary.


Assuntos
Potenciação de Longa Duração , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos C57BL , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo
15.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37781625

RESUMO

Deubiquitinases present locally at synapses regulate synaptic development, function, and plasticity. It remains largely unknown, however, whether deubiquitinases localized outside of the synapse control synapse remodeling. Here we identify ubiquitin specific protease 48 (USP48; formerly USP31) as a nuclear deubiquitinase mediating robust synapse removal. USP48 is expressed primarily during the first postnatal week in the rodent brain and is virtually restricted to nuclei, mediated by a conserved, 13-amino acid nuclear localization signal. When exogenously expressed, USP48, in a deubiquitinase and nuclear localization-dependent manner, induces striking filopodia elaboration, marked spine loss, and significantly reduced synaptic protein clustering in vitro, and erases ~70% of functional synapses in vivo. USP48 interacts with the transcription factor NF-κB, deubiquitinates NF-κB subunit p65 and promotes its stability and activation, and up-regulates NF-κB target genes known to inhibit synaptogenesis. Depleting NF-κB prevents USP48-dependent spine pruning. These findings identify a novel nucleus-enriched deubiquitinase that plays critical roles in synapse remodeling.

16.
Neuron ; 111(6): 797-806.e6, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638803

RESUMO

Empathic function is essential for the well-being of social species. Empathy loss is associated with various brain disorders and represents arguably the most distressing feature of frontotemporal dementia (FTD), a leading form of presenile dementia. The neural mechanisms are unknown. We established an FTD mouse model deficient in empathy and observed that aged somatic transgenic mice expressing GGGGCC repeat expansions in C9orf72, a common genetic cause of FTD, exhibited blunted affect sharing and failed to console distressed conspecifics by affiliative contact. Distress-induced consoling behavior activated the dorsomedial prefrontal cortex (dmPFC), which developed profound pyramidal neuron hypoexcitability in aged mutant mice. Optogenetic dmPFC inhibition attenuated affect sharing and other-directed consolation in wild-type mice, whereas chemogenetically enhancing dmPFC excitability rescued empathy deficits in mutant mice, even at advanced ages when substantial cortical atrophy had occurred. These results establish cortical hypoexcitability as a pathophysiological basis of empathy loss in FTD and suggest a therapeutic strategy.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Camundongos , Animais , Demência Frontotemporal/genética , Empatia , Expansão das Repetições de DNA , Doença de Alzheimer/genética , Camundongos Transgênicos , Proteína C9orf72/genética , Esclerose Lateral Amiotrófica/genética
17.
JCI Insight ; 7(14)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866480

RESUMO

Synaptic dysfunction is a manifestation of several neurobehavioral and neurological disorders. A major therapeutic challenge lies in uncovering the upstream regulatory factors controlling synaptic processes. Plant homeodomain (PHD) finger proteins are epigenetic readers whose dysfunctions are implicated in neurological disorders. However, the molecular mechanisms linking PHD protein deficits to disease remain unclear. Here, we generated a PHD finger protein 21B-depleted (Phf21b-depleted) mutant CRISPR mouse model (hereafter called Phf21bΔ4/Δ4) to examine Phf21b's roles in the brain. Phf21bΔ4/Δ4 animals exhibited impaired social memory. In addition, reduced expression of synaptic proteins and impaired long-term potentiation were observed in the Phf21bΔ4/Δ4 hippocampi. Transcriptome profiling revealed differential expression of genes involved in synaptic plasticity processes. Furthermore, we characterized a potentially novel interaction of PHF21B with histone H3 trimethylated lysine 36 (H3K36me3), a histone modification associated with transcriptional activation, and the transcriptional factor CREB. These results establish PHF21B as an important upstream regulator of synaptic plasticity-related genes and a candidate therapeutic target for neurobehavioral dysfunction in mice, with potential applications in human neurological and psychiatric disorders.


Assuntos
Proteínas de Homeodomínio , Doenças do Sistema Nervoso , Plasticidade Neuronal , Animais , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Plasticidade Neuronal/genética
18.
J Neurochem ; 119(1): 64-77, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21797867

RESUMO

J. Neurochem. (2011) 119, 64-77. ABSTRACT: Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not because of the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance.


Assuntos
Microdomínios da Membrana/fisiologia , Microdomínios da Membrana/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Animais , Centrifugação com Gradiente de Concentração , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Gangliosídeo G(M1)/metabolismo , Masculino , Espectrometria de Massas , Microscopia Eletrônica , Proteínas do Tecido Nervoso/química , Octoxinol/química , Proteômica , Ratos , Ratos Wistar
19.
J Affect Disord ; 279: 491-500, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128939

RESUMO

INTRODUCTION: Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD: Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS: The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS: Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION: Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION: ClinicalTrials.gov NCT00265291.


Assuntos
Transtorno Depressivo Maior , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Método Duplo-Cego , Humanos , Americanos Mexicanos/genética , Farmacogenética , Estudos Prospectivos , Resultado do Tratamento
20.
J Neurosci ; 29(9): 2948-60, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19261890

RESUMO

Classical dopaminergic signaling paradigms and emerging studies on direct physical interactions between the D(1) dopamine (DA) receptor and the NMDA glutamate receptor predict a reciprocally facilitating, positive feedback loop. This loop, if not controlled, may cause concomitant overactivation of both D(1) and NMDA receptors, triggering neurotoxicity. Endogenous protective mechanisms must exist. Here, we report that PSD-95, a prototypical structural and signaling scaffold in the postsynaptic density, inhibits D(1)-NMDA receptor subunit 1 (NR1) NMDA receptor association and uncouples NMDA receptor-dependent enhancement of D(1) signaling. This uncoupling is achieved, at least in part, via a disinhibition mechanism by which PSD-95 abolishes NMDA receptor-dependent inhibition of D(1) internalization. Knockdown of PSD-95 immobilizes D(1) receptors on the cell surface and escalates NMDA receptor-dependent D(1) cAMP signaling in neurons. Thus, in addition to its role in receptor stabilization and synaptic plasticity, PSD-95 acts as a brake on the D(1)-NMDA receptor complex and dampens the interaction between them.


Assuntos
Dopamina/fisiologia , Ácido Glutâmico/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Receptores de Dopamina D1/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Western Blotting , Linhagem Celular , AMP Cíclico/fisiologia , Proteína 4 Homóloga a Disks-Large , Imunofluorescência , Guanilato Quinases , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Infecções por Lentivirus/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Plasmídeos , Ensaio Radioligante , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA